

Odoo Development Cookbook

Build effective business applications using the latest
features in Odoo 17

Husen Daudi

Jay Vora

Parth Gajjar

Alexandre Fayolle

Holger Brunn

Daniel Reis

Odoo Development Cookbook
Copyright © 2024 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any
form or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither
the authors, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or
alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the
accuracy of this information.

Group Product Manager: Aaron Tanna
Publishing Product Manager: Kushal Dave
Book Project Manager: Prajakta Naik
Senior Editor: Kinnari Chohan
Technical Editor: Jubit Pincy
Copy Editor: Safis Editing
Proofreader: Nithya Sadanandan
Indexer: Pratik Shirodkar
Production Designer: Joshua Misquitta
Senior DevRel Marketing Executive: Deepak Kumar
DevRel Marketing Coordinator: Mayank Singh

First published: April 2016
Second edition: January 2018
Third Edition: April 2019
Fourth Edition: December 2020
Fifth Edition: May 2024
Production reference: 2280524

Published by Packt Publishing Ltd.
Grosvenor House
11 St Paul’s Square
Birmingham
B3 1RB, UK.

ISBN 978-1-80512-427-6
www.packtpub.com

Contributors

About the authors
Husen Daudi, a software developer with a Master’s Degree from Gujarat University, India, is also a Six
Sigma Black Belt consultant. He co-founded Serpent Consulting Services Pvt. Ltd., a prominent Open
Source ERP Service provider with over 100 IT specialists serving clients in more than 170 countries.
With extensive experience in ERP implementation since 2007, he brings a unique approach to his
work. Husen has played a pivotal role in developing and maintaining various ERP implementations
in both public and private sectors. Outside of work, he is a hobbyist painter and cherishes spending
time with his sons, Mufaddal and Yusuf.

Jay Vora, a software engineer with a bachelor’s degree from Gujarat University, India, is known for his
thoughtful leadership, passion for development, and enthusiasm for technology. With over a decade
of experience in ERPs since 2007, he co-founded Serpent Consulting Services Pvt. Ltd., a leading
provider of Odoo services. The company boasts a team of over 100 IT specialists serving clients across
170 countries. Jay is known for his sociable nature and active participation in various Odoo forums
and social platforms. In addition to his technical pursuits, he is also a poet, writer, and avid blogger
on topics ranging from motivation and cricket to ERP-related subjects.

Parth Gajjar is an Odoo expert with a deep understanding of the Odoo framework. He started his
career at Odoo and spent 7 years in the R&D department at Odoo India. During his time at Odoo,
he worked on several key features, including a marketing automation app, mobile application, report
engine, domain builder, and more. He also worked as a code reviewer and helped manage the code
quality of the new features. Later, he started his own venture named Droggol and now provides various
development services related to Odoo. He loves working on Odoo and solving real-world business
problems with different technologies. He often gives technical training to Odoo developers.

I would like to thank my parents and family members for all of the support they have given throughout
the writing of this book.

Alexandre Fayolle started working with Linux and free software in the mid-1990s and quickly became
interested in the Python programming language. In 2012, he joined Camptocamp to share his expertise
on Python, PostgreSQL, and Linux with the team implementing Odoo. He currently manages projects
for Camptocamp and is strongly involved in the Odoo Community Association. In his spare time, he
likes to play jazz on the vibraphone.

Holger Brunn has been a fervent open source advocate since he came into contact with the open
source market sometime in the nineties. He has programmed for ERP and similar systems in different
positions since 2001. For the last 10 years, he has dedicated his time to TinyERP, which became
OpenERP and evolved into Odoo. Currently, he works at Therp BV in the Netherlands as a developer
and is an active member of the Odoo Community Association.

Daniel Reis has had a long career in the IT industry, largely as a consultant implementing business
applications in a variety of sectors, and today works for Securitas, a multinational security services
provider. He has been working with Odoo (formerly OpenERP) since 2010, is an active contributor to
the Odoo Community Association projects, is currently a member of the board of the Odoo Community
Association, and collaborates with ThinkOpen Solutions, a leading Portuguese Odoo integrator.

Thank you note
We at SerpentCS (https://www.serpentcs.com/) would like to thank everyone who
participated actively:

• Ammar Officewala

• Chirag Patel

• Deepak Ahir

• Maitree Abhishek Pandya

• Murtuza Saleh

• Nikul Chaudhary

• Parvez Qureshi

• Prince Patel

• Rajan Soni

• Ritesh Bambhaniya

• Vacha Harshil Bhatt

About the reviewer
Maxime Chambreuil serves as the Managing Director for Latin America at Open Source Integrators,
a firm specializing in expert consulting and implementation services for open source solutions. With
nearly two decades of experience in ERP and CRM consulting, Maxime brings a robust background
in Information Systems Engineering, Business Management, and Free Software to his role

Maxime holds certifications as a Scrum Master and a Red Hat Partner Platform Certified Salesperson.
He is also one of the founders and a former Vice-President of the Odoo Community Association, a
non-profit organization dedicated to promoting and supporting Odoo and its collaborative development.
Maxime has contributed significantly to the development of Odoo modules for Management Systems,
Field Service Management, and various localizations, as well as to translations and bug reports.

Maxime’s primary mission is to assist businesses in optimizing their processes, automating workflows,
and transitioning to open source solutions.

Preface xxvii

1
Installing the Odoo Development Environment 1

Technical requirements 2
Understanding the Odoo
ecosystem 2
Odoo editions 2
Git repositories 3
Runbot 4
Odoo app store 4
Odoo Community Association 5
Official Odoo help forum 5
Odoo’s eLearning platform 5

Installing Odoo from the source 6
Getting ready 6
How to do it... 7
How it works... 8
Starting the instance 10

Managing Odoo server databases 12

Getting ready 12
How to do it... 12
How it works... 20
There’s more... 21

Storing the instance configuration
in a file 22
How to do it... 22
How it works... 22

Activating Odoo developer tools 25
How to do it... 25
How it works... 27

Updating the add-on modules
list 27
Getting ready 27
How to do it… 28
How it works… 29

2
Managing Odoo Server Instances 31

Configuring the add-ons path 32
Getting ready 32
How to do it… 32
How it works… 32

There’s more… 33

Standardizing your instance
directory layout 34

Table of Contents

Table of Contentsviii

How to do it… 34
How it works… 36
There’s more... 37

Installing and upgrading local
add-on modules 37
Getting ready 38
How to do it… 38
How it works… 41
There’s more… 43

Installing add-on modules from
GitHub 43
Getting ready 44
How to do it… 44

How it works… 44
There’s more… 45

Applying changes to add-ons 45
Getting ready 45
How to do it… 45
How it works… 46
See also 46

Applying and trying proposed
PRs 46
Getting ready 46
How to do it… 46
How it works… 47
There’s more… 47

3
Creating Odoo Add-On Modules 49

Technical requirements 50
What is an Odoo add-on
module? 50
Creating and installing a new
add-on module 51
Getting ready 51
How to do it... 52
How it works... 53

Completing the add-on module
manifest 54
Getting ready 54
How to do it... 54
How it works... 54
There’s more… 56

Organizing the add-on module file
structure 57
Getting ready 57
How to do it... 57
How it works... 58

Adding models 60
Getting ready 60
How to do it... 60
How it works... 61

Adding access security 62
Getting ready 62
How to do it... 62
How it works… 64
See also 64

Adding menu items and views 64
Getting ready 64
How to do it... 64
How it works... 69

Using the scaffold command to
create a module 70
Getting ready 71
How to do it... 71
How it works... 72

Table of Contents ix

4
Application Models 73

Technical requirements 74
Defining the model representation
and order 74
Getting ready 74
How to do it... 74
There’s more… 75

Adding data fields to a model 79
Getting ready 79
How to do it... 79
How it works... 81
There’s more... 84

Adding a float field with configurable
precision 85
Getting ready 85
How to do it... 86
How it works... 87

Adding a monetary field to a
model 87
Getting ready 87
How to do it… 87
How it works… 88

Adding relational fields to a
model 88
Getting ready 89
How to do it... 89
How it works… 91
There’s more... 92

Adding a hierarchy to a model 93
Getting ready 93
How to do it... 93
How it works… 94
There’s more… 95

Adding constraints validations to a
model 95
Getting ready 95
How to do it... 96
How it works… 96

Adding computed fields to a model 97
Getting ready 97
How to do it... 97
How it works... 99
There’s more... 100

Exposing related fields stored in
other models 100
Getting ready 100
How to do it... 100
How it works... 101
There’s more... 101

Adding dynamic relations using
reference fields 101
Getting ready 102
How to do it... 102
How it works... 102

Adding features to a model using
inheritance 103
Getting ready 103
How to do it... 104
How it works... 104

Copying the model definition using
inheritance 105
Getting ready 105
How to do it... 105
How it works... 106
There’s more… 106

Table of Contentsx

Using delegation inheritance to copy
features to another model 106
Getting ready 107
How to do it... 107
How it works... 108
There’s more... 108

Using abstract models for reusable
model features 109
Getting ready 109
How to do it... 109
How it works... 110
There’s more... 110

5
Basic Server-Side Development 111

Technical requirements 112
Specifying model methods and
using API decorators 112
Getting ready 112
How to do it… 112
How it works… 113

Reporting errors to the user 115
Getting ready 115
How to do it… 115
How it works… 115
There’s more… 116

Obtaining an empty recordset
for a different model 117
Getting ready 117
How to do it… 117
How it works… 118
See also 118

Creating new records 118
Getting ready 119
How to do it… 119
How it works… 120
There’s more… 121

Updating values of recordset
records 122
Getting ready 122
How to do it… 122
How it works… 123

There’s more… 123

Searching for records 124
Getting ready 124
How to do it… 124
How it works… 125
There’s more… 126

Combining recordsets 126
Getting ready 127
How to do it… 127
How it works… 127

Filtering recordsets 128
Getting ready 128
How to do it… 128
How it works… 129
There’s more… 129

Traversing recordset relations 129
Getting ready 129
How to do it… 130
How it works… 130
There’s more… 130
See also 131

Sorting recordsets 131
Getting ready 131
How to do it… 131
How it works… 131
There’s more… 132

Table of Contents xi

Extending the business logic defined
in a model 132
Getting ready 132
How to do it… 133
How it works… 133
There’s more… 134

Extending write() and create() 134
Getting ready 135
How to do it… 135
How it works… 136
There’s more… 137

Customizing how records are
searched 137
Getting ready 138
How to do it… 138
How it works… 139
There’s more… 140
See also 140

Fetching data in groups using
read_group() 140
Getting ready 140
How to do it… 141
How it works… 141

6
Managing Module Data 143

Technical requirements 143
Using external IDs and
namespaces 144
How to do it... 144
How it works... 144
There’s more… 145
See also 146

Loading data using XML files 146
How to do it... 147
How it works... 148
There’s more... 149

Using the noupdate and forcecreate
flags 150
How to do it... 150
How it works... 150
There’s more... 151
See also 151

Loading data using CSV files 151

How to do it... 152
How it works... 152

Add-on updates and data
migration 152
How to do it... 153
How it works... 154
There’s more... 154
See also 155

Deleting records from XML
files 155
Getting ready 155
How to do it... 155
How it works... 156

Invoking functions from XML
files 156
How to do it... 156
How it works... 157
There’s more... 157

Table of Contentsxii

7
Debugging Modules 159

The auto-reload and --dev
options 159
Getting ready 160
How to do it... 160
How it works... 160

Producing server logs to help
debug methods 161
Getting ready 161
How to do it... 162
How it works... 162
There’s more... 163

Using the Odoo shell to
interactively call methods 164
Getting ready 164

How to do it... 164
How it works... 165
There’s more... 166

Using the Python debugger to
trace method execution 166
Getting ready 166
How to do it... 166
How it works... 168
There’s more... 170
See also 170

Understanding the debug mode
options 171
How to do it... 171
How it works... 172

8
Advanced Server-Side Development Techniques 177

Technical requirements 178
Changing the user that performs
an action 178
Getting ready 178
How to do it... 179
How it works... 182
There’s more... 182
See also 183

Calling a method with a modified
context 183
Getting ready 183
How to do it... 184
How it works… 184
There’s more... 185
See also 185

Executing raw SQL queries 185

Getting ready 186
How to do it... 186
How it works... 187
There’s more... 188
See also 188

Writing a wizard to guide the
user 188
Getting ready 189
How to do it... 189
How it works... 190
There’s more... 191
Redirecting the user 192
See also 193

Defining onchange methods 194
Getting ready 194
How to do it... 194

Table of Contents xiii

How it works... 195
There’s more... 195

Calling onchange methods on the
server side 195
Getting ready 195
How to do it... 196
How it works... 196
See also 196

Defining onchange with the
compute method 197
Getting ready 197
How to do it... 197
How it works... 197
See also 197

Defining a model based on a
SQL view 198

Getting ready 198
How to do it... 198
How it works... 199
There’s more... 199
See also 200

Adding custom Settings
options 200
Getting ready 200
How to do it... 200
How it works... 202
There’s more... 203

Implementing init hooks 204
Getting ready 204
How to do it... 204
How it works... 204

9
Backend Views 207

Technical requirements 208
Adding a menu item and window
actions 208
Getting ready 208
How to do it... 209
How it works... 209
There’s more… 211
See also 212

Having an action open a specific
view 212
How to do it... 212
How it works... 214
There’s more... 215

Adding content and widgets to a
form view 215
How to do it... 215
How it works... 216
There’s more… 220

See also 220

Adding buttons to forms 220
How to do it... 220
How it works... 221
There’s more... 221

Passing parameters to forms and
actions – context 221
Getting ready 222
How to do it... 222
How it works... 222
There’s more... 223
See also 224

Defining filters on record
lists – domain 224
How to do it... 225
How it works... 225
There’s more... 226
See also 228

Table of Contentsxiv

Defining list views 228
How to do it... 228
How it works... 229
There’s more... 230

Defining search views 230
How to do it... 230
How it works... 231
There’s more... 233
See also 233

Adding a search filter side panel 234
Getting ready 234
How to do it... 234
How it works... 234
There’s more... 235

Changing existing views – view
inheritance 235
How to do it... 235
How it works... 237
There’s more... 238

Defining document-style forms 240
How to do it... 240
How it works... 241
See also 242

Dynamic form elements using
attributes 242
How to do it... 242
How it works... 242
There’s more... 243

Defining embedded views 243
How to do it... 243
How it works... 244
There’s more... 244

Displaying attachments on the side
of the form view 244
How to do it... 245
How it works... 246
There’s more... 247

Defining kanban views 247
How to do it... 247
How it works... 249
There’s more... 249
See also 250

Showing kanban cards in columns
according to their state 250
Getting ready 250
How to do it... 250
How it works... 251
There’s more... 252

Defining calendar views 252
How to do it... 252
How it works... 253
There’s more... 253

Defining graph view and pivot
view 253
Getting ready 253
How to do it... 253
How it works... 254
There’s more... 255

Defining the cohort view 255
Getting ready 255
How to do it... 255
How it works... 256

Defining the gantt view 256
Getting ready 256
How to do it... 257
How it works... 257
There’s more... 258

Defining the activity view 259
Getting ready 259
How to do it... 259
How it works... 259

Defining the map view 260
Getting ready 260
How to do it… 260
How it works... 260

Table of Contents xv

10
Security Access 261

Technical requirements 262
Creating security groups and
assigning them to users 262
Getting ready 262
How to do it... 262
How it works... 264
There’s more... 265
See also 266

Adding security access to
models 266
Getting ready 266
How to do it... 267
How it works... 267
There’s more... 269
See also 269

Limiting access to fields in
models 270
Getting ready 270
How to do it... 270
How it works... 270
There’s more... 271
See also 271

Limiting record access using record

rules 272
Getting ready 272
How to do it... 272
How it works... 273
There’s more... 275

Activating features with security
groups 275
Getting ready 276
How to do it... 276
How it works... 279
There’s more... 280

Accessing recordsets as a
superuser 281
How to do it... 281
How it works... 282
There’s more... 282

Hiding view elements and menus
based on groups 283
Getting ready 283
How to do it... 283
How it works... 283
See also 284

11
Internationalization 285

Setting up a language installation
and user preference settings 286
How to do it… 286
How it works... 288
There’s more... 289

Setting up options relating to
language 289
Getting ready 290
How to do it... 290
How it works... 291
There’s more... 291

Table of Contentsxvi

Text translation using a web client
user interface 291
Getting ready 291
How to do it... 291
How it works… 293

Exporting translation strings to a
file 293
Getting ready 293
How to do it… 294
How it works... 296
There’s more… 296

Using gettext tools to make
translations easier 297

How to do it... 298
How it works... 298
There’s more... 299

Importing translation files into
Odoo 299
Getting ready 299
How to do it... 300
How it works... 300

Altering a website’s custom language
URL code 301
Getting ready 301
How to do it... 301
How it works... 302

12
Automation, Workflows, Emails, and Printing 303

Technical requirements 304
Managing dynamic record
stages 304
Getting ready 304
How to do it... 304
How it works... 306
See also 307

Managing Kanban stages 307
Getting started 308
How to do it... 308
How it works... 309
There’s more... 310
See also 310

Adding a quick create form to a
Kanban card 310
Getting started 311
How to do it... 311
How it works... 312

Creating interactive Kanban
cards 313

Getting started 313
How to do it... 313
How it works... 316

Adding a progress bar to Kanban
views 317
Getting started 317
How to do it... 317
How it works... 318

Creating server actions 318
Getting ready 319
How to do it... 319
How it works... 321
There’s more... 322

Using Python code server actions 323
Getting ready 323
How to do it... 323
How it works... 324
There’s more... 325
See also 325

Table of Contents xvii

Using automated actions on time
conditions 325
Getting ready 325
How to do it... 325
How it works... 327
There’s more... 328
See also 329

Using automated actions on event
conditions 329
Getting ready 329
How to do it... 329
How it works... 331
There’s more... 332

Creating QWeb-based PDF
reports 332
Getting ready 332
How to do it... 333
How it works... 335
There’s more... 336

Managing activities from a Kanban
card 337
Getting started 337
How to do it... 337
How it works... 338
There’s more… 338
See also 339

Adding a stat button to a form
view 339
Getting started 339
How to do it... 339
How it works... 340
See also 341

Enabling the archive option for
records 341
Getting started 341
How to do it... 341
How it works... 342
There’s more… 342

13
Web Server Development 343

Technical requirements 345
Making a path accessible from a network 345
Getting ready 345
How to do it... 346
How it works... 347
There’s more... 350
See also 351

Restricting access to web-accessible
paths 351
Getting ready 351
How to do it... 351
How it works... 354
There’s more... 354

Consuming parameters passed to
your handlers 355

How to do it... 355
How it works... 356
There’s more... 356
See also 357

Modifying an existing handler 357
Getting ready 357
How to do it... 357
How it works… 359
There’s more... 360
See also 360

Serving static resources 360
Getting ready 360
How to do it... 361
How it works… 362

Table of Contentsxviii

14
CMS Website Development 363

Managing assets 364
What are asset bundles and different assets in
Odoo? 365
Custom assets 366
How to do it... 366
There’s more... 369

Adding CSS and JavaScript for a
website 371
Creating or modifying templates 374
Understanding QWeb templates 374
Creating a basic website template 374
Using Odoo Website Builder 375
Styling and customization 375
Loops 375
Dynamic attributes 376
Fields 377
Conditionals 378
Setting variables 378
Subtemplates 378
Inline editing 378

Managing dynamic routes 379
Getting ready 379
How to do it… 380
How it works… 382
There’s more... 383

Offering static snippets to the user 383
How to do it… 383
How it works… 385
There’s more… 386

Offering dynamic snippets to the
user 386
How to do it… 387
How it works… 389
There’s more… 390

Getting input from website users 390
Getting ready 390
How to do it… 395

Managing SEO options 395
Getting ready 396
How to do it... 396
How it works... 397
There’s more... 397

Managing sitemaps for the
website 398
Getting ready 398
How to do it... 398
How it works... 399
There’s more... 399

Getting a visitor’s country
information 399
Getting ready 399
How to do it... 400
How it works... 401

Tracking a marketing campaign 401
Getting ready 402
How to do it... 402
How it works... 403

Managing multiple websites 403
Getting ready 404
How to do it... 404
How it works... 405

Redirecting old URLs 406
Getting ready 406
How to do it... 406
How it works... 407

Publish management for
website-related records 408

Table of Contents xix

Getting ready 408
How to do it… 408

How it works... 409
There’s more… 410

15
Web Client Development 411

Technical requirements 412
Creating custom widgets 412
Getting ready 412
How to do it… 413
How it works… 415

Using client-side QWeb templates 416
Getting ready 416
How to do it... 416
How it works... 422
There’s more… 422

Making RPC calls to the server 423
Getting ready 423
How to do it… 423
How it works… 425
See also 426

Creating a new view 426
Getting ready 426

How to do it… 426
How it works… 435

Debugging your client-side code 437
Getting ready 437
How to do it... 437
How it works… 439
There’s more… 440

Improving onboarding with
tours 440
Getting ready 440
How to do it… 440
How it works… 443

Mobile app JavaScript 443
Getting ready 444
How to do it… 444
How it works… 445
There’s more... 445

16
The Odoo Web Library (OWL) 447

Technical requirements 448
Creating an OWL component 448
Getting ready 448
How to do it... 448
How it works... 449
There’s more... 450

Managing user actions in an OWL
component 450

Getting ready 450
How to do it... 450
How it works… 451
There’s more... 452

Making OWL components with
hooks 452
Getting ready 452
How to do it… 452

Table of Contentsxx

How it works... 454

Understanding the OWL component
life cycle 454
Getting ready 455
How to do it… 455
How it works… 458
There’s more… 461

Adding an OWL field to the form
view 461
Getting ready 461
How to do it… 461
How it works… 464
There’s more… 465

17
In-App Purchasing with Odoo 471

IAP concepts 472
Odoo IAP 473

How it works… 473

18
Automated Test Cases 477

Technical requirements 478
Adding Python test cases 479
Getting ready 480
How to do it... 480
How it works... 481
There’s more... 483

Running tagged Python test
cases 483
Getting ready 483
How to do it... 483
How it works... 485
There’s more... 486

Setting up Headless Chrome for
client-side test cases 486
How to do it... 486
How it works... 487

Adding client-side QUnit test
cases 487

Getting ready 487
How to do it... 488
How it works... 490
There’s more... 491

Adding tour test cases 491
Getting ready 491
How to do it... 492
How it works... 493

Running client-side test cases from
the UI 495
How to do it... 495
How it works... 497

Debugging client-side test cases 497
Getting ready 498
How to do it... 498
How it works... 500

Generating videos/screenshots for
failed test cases 500

Table of Contents xxi

How to do it... 501
How it works... 501

Populating random data for
testing 502

Getting ready 502
How to do it... 502
How it works... 503
There’s more… 505

19
Managing, Deploying, and Testing with Odoo.sh 507

Exploring some basic concepts of
Odoo.sh 508
What is Odoo.sh? 508
Why was Odoo.sh introduced? 508
When should you use Odoo.sh? 509
What are the features of Odoo.sh? 509

Creating an Odoo.sh account 510
Getting ready 510
How to do it... 511
How it works... 513
There’s more... 514

Adding and installing custom
modules 514
Getting ready 514
How to do it... 514
How it works... 516
There’s more... 516

Managing branches 517

Getting ready 517
How to do it... 517
How it works... 521

Accessing debugging options 522
How to do it... 522
There’s more... 527

Getting a backup of your instance 527
How to do it... 527
How it works... 528

Checking the status of your builds 528
How to do it... 528
How it works... 528
There’s more... 529

All Odoo.sh options 530
Getting ready 530
How to do it... 530
There’s more... 534

20
Remote Procedure Calls in Odoo 535

Technical requirements 536
Logging in to/connecting Odoo with
XML-RPC 536
Getting ready 536
How to do it... 536
How it works... 537

There’s more... 538

Searching/reading records using
XML-RPC 538
Getting ready 538
How to do it... 538
How it works... 540

Table of Contentsxxii

There’s more... 541

Creating/updating/deleting records
using XML-RPC 542
Getting ready 542
How to do it... 542
How it works... 544
There’s more... 544

Calling methods using XML-RPC 545
Getting ready 545
How to do it... 545
How it works... 546
There’s more... 547

Logging in to/connecting Odoo with
JSON-RPC 547
Getting ready 547
How to do it... 547
How it works... 549
There’s more... 549

Fetching/searching records using
JSON-RPC 550
Getting ready 550
How to do it... 551

How it works... 552
There’s more... 553

Creating/updating/deleting records
using JSON-RPC 553
Getting ready 553
How to do it... 553
How it works... 555
There’s more... 556

Calling methods using JSON-RPC 556
Getting ready 556
How to do it... 557
How it works... 558

The OCA odoorpc library 558
Getting ready 558
How to do it... 559
How it works... 560
There’s more... 561
See also 561

Generating API keys 561
How to do it... 562
How it works… 563

21
Performance Optimization 565

The prefetching pattern for
recordsets 565
How to do it… 566
How it works... 566
There’s more... 567

The in-memory cache – ormcache 568
How to do it... 568
How it works... 570
There’s more... 570

Generating images in different
size 571

How to do it... 571
How it works... 571
There’s more... 572

Accessing grouped data 573
How to do it... 573
How it works... 574
There’s more... 575
See also 575

Creating or writing multiple
records 575
How to do it... 575

Table of Contents xxiii

How it works... 576
There’s more... 577

Accessing records through database
queries 577
How to do it... 578

How it works... 578
There’s more... 579

Profiling 580
Enabling the profiler 580

22
Point of Sale 587

Technical requirements 588
Adding custom JavaScript/SCSS
files 588
Getting ready 588
How to do it… 588
How it works… 589
There’s more… 590

Adding an action button to the
keyboard 590
Getting ready 590
How to do it… 591
How it works.. 593
There’s more… 594

Making RPC calls 594
Getting ready 595
How to do it... 595

How it works… 597
There’s more… 598

Modifying the Point of Sale
screen UI 599
Getting ready 599
How to do it… 599
How it works... 600

Modifying existing business logic 601
Getting ready 601
How to do it… 601
How it works... 603

Modifying customer receipts 603
Getting ready 603
How to do it… 604
How it works... 605

23
Managing Emails in Odoo 607

Technical requirements 607
Configuring incoming and
outgoing email servers 607
Getting ready 608
How to do it... 608
How it works... 610
There’s more... 611

Managing chatter on documents 611
Getting ready 611
How to do it... 612
How it works... 613
There’s more... 613

Managing activities on
documents 614

Table of Contentsxxiv

Getting ready 614
How to do it... 614
How it works... 615
There’s more... 615

Sending emails using the Jinja
template 616
Getting ready 616
How to do it... 616
How it works... 618
There’s more... 620

Sending emails using the QWeb
template 620
Getting ready 620
How to do it... 620
How it works... 622

There’s more... 623

Managing the email alias 624
Getting ready 624
How to do it... 624
How it works... 625
There’s more... 626

Logging user changes in a chatter 627
Getting ready 627
How to do it... 627
How it works... 628

Sending periodic digest emails 629
Getting ready 629
How to do it... 629
How it works... 630

24
Managing the IoT Box 633

Technical requirements 633
Flashing the IoT Box image for
Raspberry Pi 634
Getting ready 634
How to do it… 634
How it works… 635
There’s more... 636

Connecting the IoT Box with a
network 636
Getting ready 637
How to do it… 637
How it works... 639

Adding the IoT Box to Odoo 640
Getting ready 640
How to do it… 640
How it works… 643
There’s more… 645

Loading drivers and listing
connected devices 645
Getting ready 646
How to do it… 646
How it works… 648

Taking input from devices 649
Getting ready 649
How to do it… 650
How it works… 651
There’s more… 652

Accessing the IoT Box through
SSH 652
Getting ready 652
How to do it… 652
How it works… 653
There’s more… 653

Configuring a POS 654

Table of Contents xxv

Getting ready 654
How to do it… 654
How it works… 655
There’s more… 656

Sending PDF reports directly to a
printer 657
Getting ready 657
How to do it… 657
How it works… 658

25
Web Studio 659

Installing Odoo Web Studio 660
Starting with a new app 661

Suggested features 663
Components 664
Field properties 666
Views 668
Form views 669
List views 672
Kanban views 674
Calendar views 676
Graph views 679
Pivot views 679
Search views 680
Gantt views 680
Resource views 681

Building a new app 681
Defining the data model 681
Defining the general views 684

Defining the fields and components 684
Adding a button 693
Filters 698
Edit Menu 699

Customizing an existing app 700
Choosing an existing app to customize 701

Built-in functions 702
Importing modules 702
Exporting modules 704
Search view 705
Automations 706

Reports 708
External reports 710
Internal reports 711
Blank reports 711
Modules 714
Search views 715
Automations 716

Index 719

Other Books You May Enjoy 736

Preface

While you’re reading this, you’ve already been introduced to Odoo, one of the fastest-growing open-
source ERP Business suites. Odoo is a full-featured open-source platform that assists in building
solutions for various industries. If you’re a developer, you’re sitting on a goldmine. If you’re an end
user, you’re gifted with an amazing tool to simplify your business processes, covering everything from
pre-sales to sales, inventory, and accounting.

In addition to the extensive list of applications available in Odoo, it’s like a nice dough (mmm, does it
remind you of mouthwatering pizza?) that can be molded according to your requirements. Technically,
it’s a very flexible ORM-controller (Object Relational Mapping) driven application development
framework built with extensibility in mind. Following the rule of inheritance, features/extensions,
and modifications can be implemented as modules categorized as Apps. With ORM mentioned here,
Odoo exhibits a monolithic architecture.

The Odoo 17 Development Cookbook provides a solid platform for developers, whether they’re
beginners or proficient. The code snippets cover most questions and use cases, and the explained fields
assist in developing modules accurately while maintaining code quality and usability. As a bonus,
Chapter 25 is a special one that aids developers and non-developers in generating quick prototypes.

This book is written and supported by the entire Serpent Consulting Services Pvt Ltd team, with
everyone contributing their time and effort to make the dream a reality.

Who this book is for
This book caters to developers at all levels, requiring a minimum understanding of object-oriented
programming, with Python being a mandatory skill. Even newcomers to Python programming can
find this book suitable. It’s written with the intention of accommodating developers with minimal
programming knowledge but a strong desire to learn.

The preferred development editors are PyCharm, Eclipse, or Sublime, but the majority of developers
are expected to run Odoo on an Ubuntu/Debian-based operating system. The code examples are
intentionally kept simple and clear, accompanied by thorough explanations to facilitate understanding.
Newcomers will grasp the concepts from the basics, ensuring an enjoyable learning journey.

Experienced developers already familiar with Odoo should also find value in this book. It not only
enhances their existing knowledge but also offers an easy way to stay updated on the latest Odoo
versions, with significant changes highlighted.

Prefacexxviii

Ultimately, this book aims to serve as a solid reference for daily use by both newcomers and experienced
developers alike. Additionally, the documentation of differences between various Odoo versions will be
a valuable resource for developers working with different versions simultaneously or porting modules.

What this book covers
Chapter 1, Installing the Odoo Development Environment, explains how to create a development
environment for Odoo, start Odoo, create a configuration file, and activate Odoo’s developer tools.

Chapter 2, Managing Odoo Server Instances, provides useful tips for working with add-ons installed
from GitHub and organizing the source code of your instance.

Chapter 3, Creating Odoo Add-On Modules, explains the structure of an Odoo add-on module and
gives a step-by-step guide for creating a simple module from scratch.

Chapter 4, Application Models, focuses on the Odoo model structure, and explains all types of fields with
their attributes. It also covers techniques to extend existing database structures via extended modules.

Chapter 5, Basic Server-Side Development, explains various framework methods to perform CRUD
operations in Odoo. This chapter also includes different ways to inherit and extend existing methods.

Chapter 6, Managing Module Data, shows how to ship data along with the code of your module. It
also explains how to write a migration script when a data model provided by an add-on is modified
in a new release.

Chapter 7, Debugging Modules, proposes some strategies for server-side debugging and an introduction
to the Python debugger. It also covers techniques to run Odoo in developer mode.

Chapter 8, Advanced Server-Side Development Techniques, covers more advanced topics of the ORM
framework. It is useful for developing wizards, SQL views, installation hooks, on-change methods,
and more. This chapter also explains how to execute raw SQL queries in the database.

Chapter 9, Backend Views, explains how to write business views for your data models and how to
call server-side methods from these views. It covers the usual views (list view, form view, and search
view), as well as some complex views (kanban, graph, calendar, pivot, and so on).

Chapter 10, Security Access, explains how to control who has access to what in your Odoo instance
by creating security groups, writing access control lists to define what operations are available to each
group on a given model, and, if necessary, by writing record-level rules.

Chapter 11, Internationalization, shows how language translation works in Odoo. It shows how to
install multiple languages and how to import/export translated terms.

Chapter 12, Automation, Workflows, Emails, and Printing, illustrates the different tools available
in Odoo to implement business processes for your records. It also shows how server actions and
automated rules can be used to support business rules. This also covers the QWeb report to generate
dynamic PDF documents.

Chapter 13, Web Server Development, covers the core of the Odoo web server. It shows how to create
custom URL routes to serve data on a given URL, and also shows how to control access to these URLs.

Preface xxix

Chapter 14, CMS Website Development, shows how to manage a website with Odoo. It also shows
how to create and modify beautiful web pages and QWeb templates. This chapter also includes how
to create dynamic building blocks with options. It includes some dedicated recipes for managing
SEO, user forms, UTM tracking, sitemaps, and fetching visitor location information. This chapter
also highlights the latest concept of a multiwebsite in Odoo.

Chapter 15, Web Client Development, dives into the JavaScript part of Odoo. It covers how to create
a new field widget and make RPC calls to the server. This also includes how to create a brand-new
view from scratch. You will also learn how to create onboarding tours.

Chapter 16, The Odoo Web Library (OWL), gives introductions to the new client-side framework
called OWL. It covers the life cycle of the OWL component. It also covers recipes to create a field
widget from scratch.

Chapter 17, In-App Purchasing with Odoo, covers everything related to the latest concept of IAP in
Odoo. In this chapter, you will learn how to create client and service modules for IAP. You will also
learn how to create an IAP account and draw IAP credits from the end user.

Chapter 18, Automated Test Cases, includes how to write and execute automated test cases. This
includes both server-side and client-side test cases. This chapter also covers tour test cases and setting
up headless Chrome to get videos for failed test cases.

Chapter 19, Managing, Deploying, and Testing with Odoo.sh, explains how to manage, deploy, and
test Odoo instances with the PaaS platform, Odoo.sh. It covers how you can manage different types of
instances, such as production, staging, and development. This chapter also covers various configuration
options for Odoo.sh.

Chapter 20, Remote Procedure Calls in Odoo, covers different ways to connect Odoo instances from
external applications. This chapter teaches you how to connect to and access the data from an Odoo
instance through XML-RPC, JSON-RPC, and the odoorpc library.

Chapter 21, Performance Optimization, explains the different concepts and patterns used to gain
performance improvements in Odoo. This chapter includes the concept of prefetching, ORM-cache,
and profiling the code to detect performance issues.

Chapter 22, Point of Sale, covers customization in a PoS application. This includes customization of the
user interface, adding a new action button, modifying business flow, and extending customer recipes.

Chapter 23, Managing Emails in Odoo, explains how to manage email and chatter in Odoo. It starts
by configuring mail servers and then moves to the mailing API of the Odoo framework. This chapter
also covers the Jinja2 and QWeb mail templates, chatters on the form view, field logs, and activities.

Chapter 24, Managing the IoT Box, gives you the highlights of the latest hardware of IoT Box. This
chapter covers how to configure, access, and debug IoT Box. It also includes a recipe to integrate IoT
Box with your custom add-ons.

Chapter 25, delves into an alternative approach to module development. While it’s not typically the
best recommendation for implementation, analysts can swiftly create probable designs, prototypes,
reports, or views using the techniques outlined in this module.

Prefacexxx

To get the most out of this book
Our primary and most valuable advice is simply ‘Practice’! Each chapter provides detailed insights
into the development aspect, so it’s crucial to apply what you’ve learned.

To fully benefit from this book, we recommend supplementing your reading with additional
resources on the Python programming language, the Ubuntu/Debian Linux operating system, and
the PostgreSQL database.

The book includes installation instructions for Odoo, so all you need is Ubuntu 20.04 or later, or any
other Linux-based OS. For other operating systems, you can utilize it through a virtual machine. If
you’re using Windows, you can also install Ubuntu as a subsystem:

Software/hardware covered in the book Operating system requirements
Odoo 17 + Python 3.6 and above Ubuntu 20.04 and above

This book is intended for developers who have basic knowledge of the Python programming language,
as the Odoo backend runs on Python. In Odoo, data files are created with XML, so basic knowledge
of XML is required.

This book also covers the backend JavaScript framework, PoS applications, and the website builder,
which requires basic knowledge of JavaScript, jQuery, and Bootstrap 4. The Community Edition of
Odoo is open source and freely available, but a few features, including IoT, cohort, and the dashboard,
are available only in the Enterprise Edition, so to follow along with that recipe, you will need the
Enterprise Edition.

To follow Chapter 24, Managing the IoT Box, you will require the Raspberry Pi 3 Model B+, which is
available at https://www.raspberrypi.org/products/raspberry-pi-3-model-
b-plus/.

If you are using the digital version of this book, we advise you to type the code yourself or access
the code from the book’s GitHub repository (a link is available in the next section). Doing so will
help you avoid any potential errors related to the copying and pasting of code.

Download the example code files
You can download the example code files for this book from GitHub at https://github.com/
PacktPublishing/Odoo-17-Development-Cookbook-Fifth-Edition/tree/
main. If there’s an update to the code, it will be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at https://
github.com/PacktPublishing/. Check them out!

Conventions used
There are a number of text conventions used throughout this book.

Prefacexxxii

There’s more…

This section consists of additional information about the recipe in order to make you more knowledgeable
about the recipe.

See also

This section provides helpful links to other useful information for the recipe.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at customercare@
packtpub.com and mention the book title in the subject of your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you have found a mistake in this book, we would be grateful if you would report this to us. Please
visit www.packtpub.com/support/errata and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would
be grateful if you would provide us with the location address or website name. Please contact us at
copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you
are interested in either writing or contributing to a book, please visit authors.packtpub.com.

Share your thoughts
Once you’ve read Odoo Development Cookbook, we’d love to hear your thoughts! Please click here to
go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

Preface xxxiii

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content
in your inbox daily

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

https://packt.link/free-ebook/9781805124276

2. Submit your proof of purchase

3. That’s it! We’ll send your free PDF and other benefits to your email directly

1
Installing the Odoo

Development Environment

To begin our Odoo development journey, we must set up our development environment by installing
Odoo using source code that we can use to enhance, debug, and improve our development skills. There
are several ways to set up an Odoo development environment, but this chapter proposes the best of
them. You will find several other tutorials on the web explaining the other approaches. Keep in mind
that this chapter is about setting up a development environment that has different requirements from
a production environment; production has different parameters we must set in the config file, as per
the volume of data and number of users in the system. We will cover configuration file parameters
and their usage in this chapter.

If you are new to Odoo development, you must know about certain aspects of the Odoo ecosystem.
The first recipe will give you a brief introduction to the Odoo ecosystem, after which we will install
Odoo for development purposes.

In this chapter, we will cover the following recipes:

• Understanding the Odoo ecosystem

• Installing Odoo from the source

• Managing Odoo server databases

• Storing the instance configuration in a file

• Activating Odoo developer tools

• Updating the add-on modules list

Installing the Odoo Development Environment2

Technical requirements
All the code that’s used in this chapter can be downloaded from this book’s GitHub repository
at https://github.com/PacktPublishing/Odoo-17-Development-Cookbook-
Fifth-Edition/tree/main/Chapter01.

Understanding the Odoo ecosystem
Odoo provides developers with out-of-the-box modularity and its powerful framework helps them
build projects quickly. There are various characters in the Odoo ecosystem that you should be familiar
with before embarking on your journey of becoming a successful Odoo developer.

Let’s assume you have a system with 4 CPU cores, 8 GB of RAM, and 30 concurrent Odoo users.

To determine the number of workers needed, divide the number of users by 6. In this case, 30 users
divided by 6 equals 5, which is the theoretical number of workers required.

To calculate the theoretical maximum number of workers, multiply the number of CPU cores by 2 and
add 1. For 4 CPU cores, (4 * 2) + 1 equals 9, which is the theoretical maximum number of workers.

Based on these calculations, you can use 5 workers for the Odoo users and an additional worker for
the cron worker, making a total of 6 workers.

To estimate the RAM consumption, use the following formula:

RAM = Number of workers * ((0.8 * 150) + (0.2 * 1024))

In this case, 6 workers multiplied by ((0.8 * 150) + (0.2 * 1024)) equals approximately
2 GB of RAM.

Therefore, based on these calculations, the Odoo installation will require around 2 GB of RAM.

Odoo editions

Odoo comes in two different editions. The first one is Community Edition, which is open source,
while the second one is Enterprise Edition, which has licensing fees. Unlike other software vendors,
Odoo Enterprise Edition is just a pack of extra applications that adds extra features or new apps to the
Community Edition. The Enterprise Edition runs on top of the Community Edition. The Community
Edition comes under the Lesser General Public License v3.0 (LGPLv3) and comes with all of the basic
enterprise resource planning (ERP) applications, such as sales, customer relationship management
(CRM), invoicing, purchases, and a website builder. Alternatively, the Enterprise Edition comes
with the Odoo Enterprise Edition license, which is a proprietary license. Odoo Enterprise Edition
has several advanced features, such as full accounting, studio, Voice over Internet Protocol (VoIP),
mobile responsive design, e-sign, marketing automation, delivery and banking integrations, Internet
of Things (IoT), and more. The Enterprise Edition also provides you with unlimited bugfix support.
The following diagram shows that the Enterprise Edition depends on the Community Edition, which
is why you need the latter to use the former:

Understanding the Odoo ecosystem 3

Figure 1.1 – Differences between the Community Edition and Enterprise Edition

You can find a full comparison of both editions here: https://www.odoo.com/page/editions.

Note
Odoo has the largest number of community developers among all open source ERPs on the
market with 20K+ forks on GitHub, hence why you will find a large number of third-party
apps (modules) on the app store. Some of the free apps use an Affero General Public License
version 3 (AGPLv3). You cannot use the proprietary license on your app if your application
has dependencies on such apps. Apps with an Odoo proprietary license can only be developed
on modules that have LGPL or other proprietary licenses.

Git repositories

The entire code base of Odoo is hosted on GitHub. You can post bugs/issues for stable versions here.
You can also propose a new feature by submitting a pull request (PR). There are several repositories
in Odoo. See the following table for more information:

Repositories Purpose
https://github.com/odoo/
odoo

This is the Community Edition of Odoo. It’s
available publicly.

https://github.com/odoo/
enterprise

This is the Enterprise Edition of Odoo. It’s available to
official Odoo partners only.

https://github.com/odoo-
dev/odoo

This is an ongoing development repository. It’s
available publicly.

Table 1.1 – Odoo git repositories

Installing the Odoo Development Environment4

Every year, Odoo releases a major release, which is a long-term support version that will last for 3
years, and a few minor versions. Minor versions are mostly used in Odoo’s online Software-as-a-
Service (SaaS) offering, meaning that Odoo SaaS users get early access to these features. Major version
branches have names such as 17.0, 16.0, 15.0, 14.0, 13.0, and 12.0, while minor version branches have
names such as saas-17.1 and saas-17.2 on GitHub. These minor versions are mostly used for Odoo’s
SaaS platform. The master branch is under development and is unstable, so it is advisable not to
use this for production since it might break your database.

Runbot

Runbot is Odoo’s automated testing environment. Whenever there is a new commit in Odoo’s GitHub
branch, Runbot pulls those latest changes and creates the builds for the last four commits. Here, you
can test all stable and in-development branches. You can even play with the Enterprise Edition and
its development branches.

Every build has a different background color, which indicates the status of the test cases. A green
background color means that all of the test cases run successfully and you can test that branch, while
a red background color means that some test cases have failed on this branch and some features might
be broken on that build. You can view the logs for all test cases, which show exactly what happens
during installation. Every build has two databases. The all database has all of the modules installed
on it, while the base database only has base Odoo modules installed. Every build is installed with
basic demo data, so you can test it quickly without extra configurations.

Note
You can access Runbot at http://runbot.odoo.com/runbot.

The following credentials can be used to access any Runbot build:

• Login ID: admin Password: admin

• Login ID: demo Password: demo

• Login ID: portal Password: portal

Note
This is a public testing environment, so other users might be using/testing the same branch
that you are testing.

Odoo app store

Odoo launched the app store a few years back, and it was an instant hit. At the time of writing, over
39,000+ different apps are hosted there. You will find lots of free and paid applications for different

Understanding the Odoo ecosystem 5

versions here. This includes specific solutions for different business verticals, such as education, food
industries, and medicine. It also includes apps that extend or add new features to existing Odoo
applications. The app store also provides numerous beautiful themes for the Odoo website builder. In
Chapter 3, Creating Odoo Add-On Modules, you will learn how to set pricing and currency for your
custom module.

You can access the Odoo app store by going to https://www.odoo.com/apps.

You can access Odoo’s themes by going to https://www.odoo.com/apps/themes.

Note
Odoo has open sourced several themes after version 13 and now works with an advanced
JavaScript called OWL. We will cover this in Chapter 16. Note that these were paid themes in
previous versions. This means that, in Odoo versions 15 and 16, you can download and use
those beautiful themes at no extra cost.

Odoo Community Association

Odoo Community Association (OCA) is a non-profit organization that develops/manages community-
based Odoo modules. All OCA modules are open source and maintained by Odoo community members.
OCA’s GitHub account contains multiple repositories for different Odoo applications. Apart from
Odoo modules, it also contains various tools, a migration library, accounting localizations, and so on.

Here is the URL for OCA’s official GitHub account: https://github.com/OCA.

Official Odoo help forum

Odoo has a very powerful framework, and tons of things can be achieved just by using/activating
options or by following specific patterns. Consequently, if you run into some technical issues or if you
are not sure about some complex cases, then you can post your query on Odoo’s official help forum.
Lots of developers are active on this forum, including some official Odoo employees.

You can search for questions or post your new questions by going to https://www.odoo.com/
forum/help-1.

Odoo’s eLearning platform

Recently, Odoo has launched a new eLearning platform. This platform provides lots of videos that
explain how to use different Odoo applications. At the time of writing, this platform does not have
technical videos, just functional ones.

Here is the URL for Odoo’s eLearning platform: https://www.odoo.com/slides.

Installing the Odoo Development Environment6

Installing Odoo from the source
It is highly recommended that you use the Linux Ubuntu operating system to install Odoo since this
is the operating system that Odoo uses for all its tests, debugging, and installations of Odoo Enterprise.
Additionally, most Odoo developers use GNU/Linux distributions, so they are much more likely to
get support from the Odoo community for operating system-level issues that occur in GNU/Linux
than Windows or macOS.

It is also recommended to develop Odoo add-on modules using the same environment (the same
distribution and the same version) as the one that will be used in production. This will avoid nasty
surprises, such as discovering on the day of deployment that a library has a different version than
expected, with a slightly different and incompatible behavior. If your workstation is using a different
operating system, a good approach is to set up a virtual machine (VM) on your workstation and
install a GNU/Linux distribution in the VM.

Note
Ubuntu is available as an app in the Microsoft Store, so you can use that if you don’t want to
switch to Ubuntu.

For this book, we will be using Ubuntu Server 22.04 LTS, but you can use any other Debian GNU/
Linux operating system. Whatever Linux distribution you choose, you should have some notion of
how to use it from the command line, and knowing about system administration will certainly not
do any harm.

Getting ready

We are assuming that you have Ubuntu 22.04 up and running and that you have an account with root
access or that sudo has been configured. In the following sections, we will install Odoo’s dependencies
and download Odoo’s source code from GitHub.

Note
Some of the configurations require a system login username, so we will use $(whoami)
whenever a login username is required in a command line. This is a shell command that will
substitute your login in the command you are typing.

Some operations will be easier if you have a GitHub account. If you don’t have one already, go to
https://github.com and create one.

Installing Odoo from the source 9

Odoo uses the psycopg2 Python library to connect with a PostgreSQL database. To access a
PostgreSQL database with the psycopg2 library, Odoo uses the following values by default:

• By default, psycopg2 tries to connect to a database with the same username as the current
user on local connections, which enables password-less authentication (this is good for the
development environment)

• The local connection uses Unix domain sockets

• The database server listens on port 5432

That’s it! Your PostgreSQL database is now ready to be connected with Odoo.

As this is a development server, we have given --superuser rights to the user. It is OK to give the
PostgreSQL user more rights as this will be your development instance. For a production instance,
you can use the --createdb command line instead of --superuser to restrict rights. The –
superuser rights in a production server will give additional leverage to an attacker exploiting a
vulnerability in some part of the deployed code.

If you want to use a database user with a different login, you will need to provide a password for the
user. This is done by passing the --pwprompt flag on the command line when creating the user, in
which case the command will prompt you for the password.

If the user has already been created and you want to set a password (or modify a forgotten password),
you can use the following command:

$ psql -c "alter role $(whoami) with password 'newpassword'"

If this command fails with an error message saying that the database does not exist, it is because you
did not create a database named after your login name in step 4 of this recipe. That’s fine; just add the
--dbname option with an existing database name, such as --dbname template1.

Git configuration

For the development environment, we are using Odoo sourced from GitHub. With git, you can
easily switch between different Odoo versions. Note that you can fetch the latest changes with the
git pull command.

In step 5, we configured our git user.

In step 6, we downloaded the source code from Odoo’s official GitHub repository. We used the git
clone command to download Odoo’s source code. We used a single branch as we only wanted a
branch for the 17.0 version. We also used --depth 1 to avoid downloading the full commit history
of the branch. These options will download the source code very quickly, but if you want, you can
omit those options.

Installing the Odoo Development Environment10

Odoo developers also propose nightly builds, which are available as tarballs and distribution packages.
The main advantage of using git clone is that you will be able to update your repository when
new bug fixes are committed in the source tree. You will also be able to easily test any proposed fixes
and track regressions so that you can make your bug reports more precise and helpful for developers.

Note
If you have access to the Enterprise Edition source code, you can download that in a separate
folder under the ~/odoo-dev directory.

Virtual environments

Python virtual environments, or venvs for short, are isolated Python workspaces. These are very
useful to Python developers because they allow different workspaces with different versions of various
Python libraries to be installed, possibly on different Python interpreter versions.

You can create as many environments as you wish using the python3 -m venv ~/newvenv
command. This will create a newvenv directory in the specified location, containing a bin/
subdirectory and a lib/python3.10 subdirectory.

In step 7, we created a new virtual environment in the ~/venv-odoo-17.0 directory. This will be
our isolated Python environment for Odoo, and all of Odoo’s Python dependencies will be installed
in this environment.

To activate the virtual environment, we need to use the source command. We used the source
~/venv-odoo-17.0/bin/activate command to activate the virtual environment.

Installing Python packages

Odoo’s source code has a list of Python dependencies in requirements.txt. In step 8, we installed
all those requirements via the pip3 install command.

That’s it. Now, you can run the Odoo instance.

Starting the instance

Now comes the moment you’ve been waiting for. To start our first instance, in step 9, we created
a new empty database, used the odoo-bin script, and then started the Odoo instance with the
following command:

python3 odoo-bin -d odoo-test -i base --addons-path=addons
--db-filter=odoo-test$

Installing Odoo from the source 11

You can also omit python3 by using ./ before odoo-bin as it is an executable Python script:

./odoo-bin -d odoo-test -i base --addons-path=addons --db-filter=odoo-
test$

With odoo-bin, a script with the following command-line arguments is used:

• -d database_name: Use this database by default.

• --db-filter=database_name$: Only try to connect to databases that match the supplied
regular expression. One Odoo installation can serve multiple instances that live in separate
databases, and this argument limits the available databases. The trailing $ is important as the
regular expression is used in match mode. This enables you to avoid selecting names starting
with the specified string.

• --addons-path=directory1,directory2,...: This is a comma-separated list of
directories in which Odoo will look for add-ons. This list is scanned at instance creation time
to populate the list of available add-on modules in the instance. If you want to use Odoo’s
Enterprise Edition, then add its directory with this option.

• -i base: This is used to install a base module. This is required when you have created a
database via the command line.

If you are using a database user with a database login that is different from your Linux login, you need
to pass the following additional arguments:

• --db_host=localhost: Use a TCP connection to the database server

• --db_user=database_username: Use the specified database login

• --db_password=database_password: This is the password for authenticating against
the PostgreSQL server

To get an overview of all available options, use the --help argument. We will see more of the odoo-
bin script later in this chapter.

When Odoo is started on an empty database, it will create the database structure that’s needed to
support its operations. It will also scan the add-on path to find the available add-on modules and
insert some into the initial records in the database. This includes the admin user with the default
admin password, which you will use for authentication.

Pointing your web browser to http://localhost:8069/ leads you to the login page of your
newly created instance, as shown in the following screenshot:

Installing the Odoo Development Environment12

Figure 1.2 – Login screen of the Odoo instance

This is because Odoo includes an HTTP server. By default, it listens on all local network interfaces
on TCP port 8069.

Managing Odoo server databases
When working with Odoo, all the data in your instance is stored in a PostgreSQL database. All the
standard database management tools you are used to are available, but Odoo also proposes a web
interface for some common operations.

Getting ready

We are assuming that your work environment is set up and that you have an instance running.

How to do it...

The Odoo database management interface provides tools to create, duplicate, remove, back up, and
restore a database. There is also a way to change the master password, which is used to protect access
to the database management interface.

Managing Odoo server databases 13

Accessing the database management interface

To access the database, perform the following steps:

1. Go to the login screen of your instance (if you are authenticated, log out).

2. Click on Manage Databases. This will navigate you to http://localhost:8069/web/
database/manager (you can also point your browser directly to that URL):

Figure 1.3 – Database manager

Setting or changing the master password

If you’ve set up your instance with default values and haven’t modified it yet, as we will explain in the
following section, the database management screen will display a warning, telling you that the master
password instance hasn’t been set and will advise you to set one with a direct link:

Figure 1.4 – Master password warning

Installing the Odoo Development Environment14

To set the master password, perform the following steps:

1. Click on the Set Master Password button. You will get a dialog box asking you to fill in the
New Master Password field:

Figure 1.5 – Setting a new master password

2. Type in a complex new password and click Continue.

If the master password is already set, click on the Set Master Password button at the bottom of the
screen to change it. In the dialog box that opens, type the previous master password and the new one,
and then click Continue:

Figure 1.6 – Changing the master password

Note
The master password is the server configuration file under the admin_passwd key. If the
server is started without a configuration file being specified, a new one will be generated in
~/.odoorc. Refer to the next recipe for more information about the configuration file.

Managing Odoo server databases 15

Creating a new database

This dialog box can be used to create a new database instance that will be handled by the current
Odoo server. Follow these steps:

1. On the database management screen, click on the Create Database button, which can be found
at the bottom of the screen. This will bring up the following dialog:

Figure 1.7 – The Create Database dialog

2. Fill in the form, as follows:

 � Master Password: This is the master password for this instance.

 � Database Name: Input the name of the database you wish to create.

 � Email: Add your email address here; this will be your username later.

 � Password: Type in the password you want to set for the admin user of the new instance.

 � Phone Number: Set your phone number (optional).

 � Language: Select the language that you wish to be installed by default in the new database in
the drop-down list. Odoo will automatically load the translations for the selected language.

Installing the Odoo Development Environment16

 � Country: Select the country of the main company in the drop-down list. Selecting this will
automatically configure a few things, including the company’s currency.

 � Demo data: Check this box to obtain demonstration data. This is useful for running
interactive tests or setting up a demonstration for a customer, but it should not be
checked for a database that is designed to contain production data.

Note
If you wish to use the database to run automated tests for the modules (refer to Chapter 7,
Debugging Modules), you need to have the demonstration data since the vast majority of the
automated tests in Odoo depend on these records to run successfully.

3. Click Continue and wait until the new database is initialized. After, you will be redirected to
the instance and connected as the administrator.

Troubleshooting
If you are redirected to a login screen, this is probably because the --db-filter option was passed
to Odoo and the new database name didn’t match the filter option. Note that the odoo-
bin start command does this silently, making only the current database available. To work
around this, simply restart Odoo without the start command, as shown in the Installing
Odoo from the source recipe. If you have a configuration file (refer to the Storing the instance
configuration in a file recipe later in this chapter), check that the db_filter option is unset
or set to a value matching the new database name.

Duplicating a database

Often, you will have an existing database, and you will want to experiment with it to try a procedure or
run a test, but without modifying the existing data. The solution here is simple: duplicate the database
and run the test on the copy. Repeat this as many times as required:

1. On the database management screen, click on the Duplicate Database link next to the name
of the database you wish to clone:

Managing Odoo server databases 17

Figure 1.8 – The Duplicate Database dialog

2. Fill in the form, as follows:

 � Master Password: This is the master password of the Odoo server

 � New Name: The name you want to give to the copy

3. Click Continue.

4. You can then click on the name of the newly created database on the database management
screen to access the login screen for that database.

Removing a database

When you have finished your tests, you will want to clean up the duplicated databases. To do this,
perform the following steps:

1. On the database management screen, you will find the Delete button next to the name of the
database. Clicking on it will bring up the following dialog:

Figure 1.9 – The Delete Database dialog

Installing the Odoo Development Environment18

2. Fill in the form, as well as the Master Password field, which is the master password of the
Odoo server.

3. Click Delete.

Caution! Potential data loss!
If you selected the wrong database and have no backup, there is no way to recover the lost data.

Backing up a database

To create a backup, perform the following steps:

1. On the database management screen, you will find the Backup button next to the database’s
name. Clicking on it will bring up the following dialog:

Figure 1.10 – The Backup Database dialog

2. Fill in the form, as follows:

 � Master Password: This is the master password of the Odoo server.

 � Backup Format: Always use zip for a production database since this is the only real full
backup format. Only use the pg_dump format for a development database when you don’t
care about the file store.

3. Click Backup. The backup file will be downloaded to your browser.

Managing Odoo server databases 19

Restoring a database backup

If you need to restore a backup, this is what you need to do:

1. On the database management screen, you will find a Restore Database button at the bottom
of the screen. Clicking on it will bring up the following dialog:

Figure 1.11 – The Restore Database dialog

2. Fill in the form, as follows:

 � Master Password: This is the master password of the Odoo server.

 � File: This is a previously downloaded Odoo backup.

 � Database Name: Provide the name of the database in which the backup will be restored.
The database must not exist on the server.

 � This database might have been moved or copied: Choose This database was moved if the
original database was on another server or if it has been deleted from the current server.
Otherwise, choose This database is a copy, which is the safe default option.

3. Click Continue.

Installing the Odoo Development Environment20

Note
It isn’t possible to restore a database on top of itself. If you try to do this, you will get an error
message (Database restore error: Database already exists). You need to remove the database first.

How it works...

These features, apart from the Change master password screen, run PostgreSQL administration
commands on the server and report back through the web interface.

The master password is a very important piece of information that only lives in the Odoo server
configuration file and is never stored in the database. There used to be a default value of admin,
but using this value is a security liability. In Odoo v9 and later, this is identified as an unset master
password, and you are urged to change it when accessing the database administration interface. Even
if it is stored in the configuration file under the admin_passwd entry, this is not the same as the
password of the admin user; these are two independent passwords. The master password is set for
an Odoo server process, which itself can handle multiple database instances, each of which has an
independent admin user with their own password.

Security considerations
Remember that we are considering a development environment in this chapter. The Odoo
database management interface is something that needs to be secured when you are working
on a production server as it gives access to a lot of sensitive information, especially if the server
hosts Odoo instances for several different clients.

To create a new database, Odoo uses the PostgreSQL createdb utility and calls the internal Odoo
function to initialize the new database in the same way as when you start Odoo on an empty database.

To duplicate a database, Odoo uses the --template option of createdb, passing the original
database as an argument. This duplicates the structure of the template database in the new database
using internal and optimized PostgreSQL routines, which is much faster than creating a backup and
restoring it (especially when using the web interface, which requires you to download the backup file
and upload it again).

Backup and restore operations use the pg_dump and pg_restore utilities, respectively. When
using the zip format, the backup will also include a copy of the file store that contains a copy of the
documents when you configure Odoo so that it doesn’t keep these in the database; this is the default
option in 14.0. Unless you change it, these files reside in ~/.local/share/Odoo/filestore.

If the backup becomes too large, downloading it may fail. This will be either because the Odoo server
itself is unable to handle the large file in memory or because the server is running behind a reverse
proxy because there is a limit to the size of HTTP responses that were set in the proxy. Conversely,
for the same reasons, you will likely experience issues with the database restore operation. When you
start running into these issues, it’s time to invest in a more robust external backup solution.

Installing the Odoo Development Environment22

Storing the instance configuration in a file
The odoo-bin script has dozens of options, and it is tedious to remember them all, as well as how
to remember to set them properly when starting the server. Fortunately, it is possible to store them
all in a configuration file and only specify the ones you want to alter for development, for example.

How to do it...

For this recipe, perform the following steps:

1. To generate a configuration file for your Odoo instance, run the following command:

$./odoo-bin --save --config myodoo.cfg --stop-after-init

2. You can add additional options, and their values will be saved in the generated file. All the
unset options will be saved with their default value set. To get a list of possible options, use the
following command:

$./odoo-bin --help | less

This will provide you with some help about what the various options perform.

3. To convert from the command-line form into the configuration form, use the long option name,
remove the leading dashes, and convert the dashes in the middle into underscores. So, in this
case, --without-demo will become without_demo. This works for most options, but
there are a few exceptions, all of which are listed in the following section.

4. Edit the myodoo.cfg file (use the table in the following section for some parameters you may
want to change). Then, to start the server with the saved options, run the following command:

$./odoo-bin -c myodoo.cfg

Note
The --config option is commonly abbreviated as -c.

How it works...

At startup, Odoo loads its configuration in three passes. First, a set of default values for all options is
initialized from the source code. After, the configuration is parsed, and then any value that’s defined
in the file overrides the defaults. Finally, the command-line options are analyzed, and their values
override the configuration that was obtained from the previous pass.

As we mentioned earlier, the names of the configuration variables can be found by looking at the names
of the command-line options by removing the leading dashes and converting the middle dashes into
underscores. There are a few exceptions to this, notably the following:

Storing the instance configuration in a file 23

Table 1.1 – Difference in Odoo parameters regarding the command line and the configuration file

Here’s a list of options that are commonly set through the configuration file:

Table 1.2 – Odoo parameters and their usage

Installing the Odoo Development Environment24

Here’s a list of configuration options related to the database:

Table 1.3 – Odoo parameters and their usage

The configuration file is parsed by Odoo using the Python ConfigParser module. However, the
implementation in Odoo 11.0 has changed, and it is no longer possible to use variable interpolation. So,
if you are used to defining values for variables from the values of other variables using the %(section.
variable)s notation, you will need to change your habits and revert to explicit values.

Activating Odoo developer tools 25

Some options are not used in config files, but they are widely used during development:

Table 1.4 – Odoo parameters and their usage

Activating Odoo developer tools
When using Odoo as a developer, you need to know how to activate developer mode in the web
interface so that you can access the technical settings menu and developer information. Enabling
debug mode will expose several advanced configuration options and fields. These options and fields
are hidden in Odoo for better usability because they are not used daily.

How to do it...

To activate developer mode in the web interface, perform the following steps:

1. Connect to your instance and authenticate as admin.

2. Go to the Settings menu.

3. Scroll to the bottom and locate the Developer Tools section:

Figure 1.12 – Links to activate different developer modes

Installing the Odoo Development Environment26

4. Click Activate the developer mode.

5. Wait for the UI to reload.

Alternative way
It is also possible to activate developer mode by editing the URL. Before the # sign, insert
?debug=1. For example, if your current URL is http://localhost:8069/web#menu_
id=102&action=94 and you want to enable developer mode, then you need to change that
URL to http://localhost:8069/web?debug=1#menu_id=102&action=94.
Furthermore, if you want to use debug mode with assets, then change the URL to http://
localhost:8069/web?debug=assets#menu_id=102&action=94.

To exit developer mode, you can perform any one of the following operations:

• Edit the URL and write ?debug=0 in the query string

• Use Deactivate the developer mode from the same place in the Settings menu

• Click on the bug icon in the top menu and click on the Leave Developer Tools option

Lots of developers are using browser extensions to toggle debug mode. By doing this, you can toggle
debug mode quickly without accessing the Settings menu. These extensions are available for Firefox and
Chrome. The following screenshot shows one such plugin you can use and find in the Chrome store:

Figure 1.13 – Browser extension for debug mode

Note
The behavior of the debug mode has changed since Odoo v13. Since v13, the status of debug
mode is stored in the session, implying that even if you have removed ?debug from the URL,
debug mode will still be active.

Updating the add-on modules list 27

How it works...

In developer mode, two things happen:

• You get tooltips when hovering over a field in a form view or over a column in a list view. These
provide technical information about the field (internal name, type, and so on).

• A drop-down menu with a bug icon is displayed next to the user’s menu in the top-right corner,
giving you access to technical information about the model being displayed, the various related
view definitions, the workflow, custom filter management, and so on.

There is a variant of developer mode called Developer mode (with assets). This mode behaves like
the normal developer mode, but the JavaScript and CSS code that’s sent to the browser is not minified,
which means that the web development tools of your browser can easily be used to debug the JavaScript
code (more on this in Chapter 15, Web Client Development).

Caution!
Test your add-ons both with and without developer mode since the unminified versions of the
JavaScript libraries can hide bugs that only bite you in the minified version.

Updating the add-on modules list
When a new add-on module is added, you need to run the Update Module List wizard to get your
new application in the app list. In this recipe, you will learn how to update the app list.

Getting ready

Start your instance and connect to it using your Administrator account. After doing this, activate
developer mode (if you don’t know how to activate developer mode, refer to the Activating Odoo
developer tools recipe).

Installing the Odoo Development Environment28

How to do it…

To update the list of available add-on modules in your instance, you need to perform the following steps:

1. Open the Apps menu.

2. Click Update Apps List:

Figure 1.14 – Update Apps List

3. In the dialog that appears, click Update:

Figure 1.15 – Dialog to update the apps list

Updating the add-on modules list 29

4. At the end of the update, you can click on the Apps entry to see the updated list of available
add-on modules. You will need to remove the default filter on Apps in the search box to see
all of them.

How it works…

When the Update button is clicked, Odoo will read the add-on path configuration variable. For each
directory in the list, it will look for immediate subdirectories containing an add-on manifest file, which
is a file named __manifest__.py that’s stored in the add-on module directory. Odoo reads the
manifest, expecting to find a Python dictionary. Unless the manifest contains a key installable
instance set to False, the add-on module metadata is recorded in the database. If the module is
already present, the information is updated. If not, a new record is created. If a previously available
add-on module is not found, the record is not deleted from the list.

Note
An updated apps list is only required if you add the new add-on path after initializing the
database. If you add the new add-on path to the configuration file before initializing the database,
then there will be no need to update the module list manually.

To summarize what we have learned so far, after installing, you can start the Odoo server by using the
following command line (if you are using a virtual environment, then you need to activate it first):

python3 odoo-bin -d odoo-test -i base --addons-path=addons
--db-filter=odoo-test

Once you’ve run the module, you can access Odoo from http://localhost:8069.

You can also use a configuration file to run Odoo, as follows:

./odoo-bin -c myodoo.cfg

Once you start the Odoo server, you can install/update modules from the App menu.

2
Managing Odoo

Server Instances

In Chapter 1, Installing the Odoo Development Environment, we looked at how to set up an Odoo
instance using only the standard core add-ons that are shipped with the source. As a standard practice
to customize Odoo default features, we create a separate module and keep it in a different repository
so that you can later upgrade Odoo default and your own repository to keep it clean. This chapter
focuses on adding non-core or custom add-ons to an Odoo instance. In Odoo, you can load add-ons
from multiple directories. In addition, it is recommended that you load your third-party add-ons or
your own custom add-ons from separate folders to avoid conflicts with Odoo core modules. Even
Odoo Enterprise Edition is a type of add-ons directory, and you need to load this just like a normal
add-ons directory.

In this chapter, we will cover the following recipes:

• Configuring the add-ons path

• Standardizing your instance directory layout

• Installing and upgrading local add-on modules

• Installing add-on modules from GitHub

• Applying changes to add-ons

• Applying and trying proposed pull requests (PRs)

About the terminology
In this book, we will use the terms add-on, module, app, and add-on module interchangeably.
All of them refer to the Odoo app or extension app that can be installed in Odoo from the
user interface.

Managing Odoo Server Instances32

Configuring the add-ons path
With the help of the addons_path parameter, you can load your own add-on modules into Odoo.
When Odoo initializes a new database, it will search for add-on modules within directories that have
been provided in the addons_path configuration parameter. Odoo will search in these directories
for the potential add-on module.

Directories listed in addons_path are expected to contain subdirectories, each of which is an
add-on module. Following the initialization of the database, you will be able to install modules that
are given in these directories.

Getting ready

This recipe assumes that you have an instance ready with a configuration file generated, as described
in the Storing the instance configuration in a file recipe in Chapter 1, Installing the Odoo Development
Environment. Note that the source code of Odoo is available in ~/odoo-dev/odoo, and the
configuration file in ~/odoo-dev/odoo/myodoo.cfg.

How to do it…

To add the ~/odoo-dev/local-addons directory to the addons_path parameter of the
instance, perform the following steps:

1. Edit the configuration file for your instance; that is, ~/odoo-dev/myodoo.cfg.

2. Locate the line starting with addons_path=. By default, this should look like the following:

addons_path = ~/odoo-dev/odoo/odoo/addons,~/odoo-dev/odoo/addons

3. Modify the line by appending a comma, followed by the name of the directory you want to add
to addons_path, as shown in the following code:

addons_path = ~odoo-dev/odoo/odoo/addons,~odoo-dev/odoo/
addons,~/odoo-dev/local-addons

4. Restart your instance from the terminal:

$ ~/odoo-dev/odoo/odoo-bin -c myodoo.cfg

How it works…

When Odoo is restarted, the configuration file is read. The value of the addons_path variable is
expected to be a comma-separated list of directories. Relative paths are accepted, but they are relative
to the current working directory and therefore should be avoided in the configuration file.

Installing and upgrading local add-on modules 37

There’s more...

The development of complex modules requires various configuration options, which leads to updating
the configuration file whenever you want to try any configuration option. Updating the configuration
file frequently can be a headache, and to avoid this, an alternative way is to pass all configuration
options from the command line, as follows:

1. Activate virtualenv manually:

$ source env/bin/activate

2. Go to the Odoo source directory:

$ cd src/odoo

3. Run the server:

./odoo-bin --addons-path=addons,../../local -d test-16 -i
account,sale,purchase --log-level=debug

In step 3, we passed a few configuration options directly from the command line. The first is --addons-
path, which loads Odoo’s core add-ons directory, addons, and your add-ons directory, local, in
which you will put your own add-on modules. The -d option will use the test-16 database or create
a new database if it isn’t present. The -i option will install the account, sale, and purchase
modules. Next, we passed the log-level option and increased the log level to debug so that it
would display more information in the log.

Note
By using the command line, you can quickly change the configuration options. You can also
see live logs in the terminal. For all available options, refer to Chapter 1, Installing the Odoo
Development Environment, or use the --help command to view a list of all options and a
description of each option.

Installing and upgrading local add-on modules
The core functionality of Odoo comes from its add-on modules. You have a wealth of add-ons available
as part of Odoo itself, as well as add-on modules that you can download from the app store or that
have been written by yourself.

In this recipe, we will demonstrate how to install and upgrade add-on modules through the web
interface and from the command line.

The main benefits of using the command line for these operations include being able to act on more than
one add-on at a time and having a clear view of the server logs as the installation or update progresses,
which is very useful when in development mode or when scripting the installation of an instance.

Managing Odoo Server Instances38

Getting ready

Make sure that you have a running Odoo instance with its database initialized and the add-ons path
properly set. In this recipe, we will install/upgrade a few add-on modules.

How to do it…

There are two possible methods to install or update add-ons—you can use the web interface or the
command line.

From the web interface

To install a new add-on module in your database using the web interface, perform the following steps:

1. Connect to the instance using the Administrator account and open the Apps menu:

Figure 2.1 – List of Odoo apps

2. Use the search box to locate the add-on you want to install. Here are a few instructions to help
you with this task:

i. Activate the Not Installed filter.

ii. If you’re looking for a specific functionality add-on rather than a broad functionality
add-on, remove the Apps filter.

iii. Type a part of the module name in the search box and use this as a Module filter.

iv. You may find that using the list view gives something more readable.

3. Click on the Install button under the module name on the card.

Installing and upgrading local add-on modules 39

Note that some Odoo add-on modules have external Python dependencies. If Python dependencies are
not installed in your system, then Odoo will abort the installation, and it will show the following dialog:

Figure 2.2 – Warning for external library dependency

To fix this, just install the relevant Python dependencies on your system.

To update a pre-installed module in your database, perform the following steps:

1. Connect to the instance using the Administrator account.

2. Open the Apps menu.

3. Click on Apps:

Figure 2.3 – Odoo apps list

Managing Odoo Server Instances40

4. Use the search box to locate the add-on you want to install. Here are a few tips:

i. Activate the Installed filter.

ii. If you’re looking for a specific functionality add-on rather than a broad functionality
add-on, remove the Apps filter.

iii. Type a part of the add-on module name into the search box and then press Enter to
use this as a Module filter. For example, type crm and press Enter to search CRM apps.

iv. You may find that using the list view gives you something more readable.

5. Click on the three dots in the top-right corner of the card and click on the Upgrade option:

Figure 2.4 – Drop-down link for upgrading the module

Activate Developer mode to see the technical name of the module. See Chapter 1, Installing the Odoo
Development Environment, if you don’t know how to activate developer mode:

Figure 2.5 – Application’s technical names

Managing Odoo Server Instances42

The installation process of a single module consists of the following steps:

1. If there are any dependencies, run the preinit add-on hook.

2. Load the model definitions from the Python source code and update the database structure,
if necessary (refer to Chapter 4, Application Models, for details).

3. Load the data files of the add-on and update the database contents, if necessary (refer to
Chapter 6, Managing Module Data, for details).

4. Install the add-on demo data if demo data has been enabled in the instance.

5. If there are any dependencies, run the add-on postinit hook.

6. Run a validation of the view definitions of the add-on.

7. If demo data is enabled and a test is enabled, run the tests of the add-on (refer to Chapter 18,
Automated Test Cases, for details).

8. Update the module state in the database.

9. Update the translations in the database from the add-on’s translations (refer to Chapter 11,
Internationalization, for details).

Note
The preinit and postinit hooks are defined in the __manifest__.py file using the
pre_init_hook and post_init_hook keys, respectively. These hooks are used to invoke
Python functions before and after the installation of an add-on module. To learn more about
init hooks, refer to Chapter 3, Creating Odoo Add-on Modules.

Add-on update

When you update an add-on, Odoo checks in its list of available add-on modules for an installed
add-on with the given name. It also checks for the reverse dependencies of that add-on (these are
add-ons that depend on the updated add-on). If any, it will recursively update them, too.

The update process of a single add-on module consists of the following steps:

1. Run the add-on module’s pre-migration steps, if any (refer to Chapter 6, Managing Module
Data, for details).

2. Load the model definitions from the Python source code and update the database structure if
necessary (refer to Chapter 4, Application Models, for details).

3. Load the data files of the add-on and update the database’s contents if necessary (refer to
Chapter 6, Managing Module Data, for details).

4. Update the add-on’s demo data if demo data is enabled in the instance.

5. If your module has any migration methods, run the add-on post-migration steps (refer to
Chapter 6, Managing Module Data, for details).

6. Run a validation of the view definitions of the add-on.

Installing add-on modules from GitHub 43

7. If demo data is enabled and a test is enabled, run the tests of the add-on (refer to Chapter 18,
Automated Test Cases, for details).

8. Update the module state in the database.

9. Update the translations in the database from the add-on’s translations (refer to Chapter 11,
Internationalization, for details).

Note
Note that updating an add-on module that is not installed does nothing at all. However,
installing an add-on module that is already installed reinstalls the add-on, which can have
some unintended effects on some data files that contain data that is supposed to be updated
by the user and not updated during the normal module update process (refer to the Using the
noupdate and forcecreate flags recipe in Chapter 6, Managing Module Data). There is no risk of
error from the user interface, but this can happen from the command line.

There’s more…

Be careful with dependency handling. Consider an instance where you want to have the sale,
sale_stock, and sale_specific add-ons installed, with sale_specific depending on
sale_stock, and sale_stock depending on sale. To install all three, you only need to install
sale_specific, as it will recursively install the sale_stock and sale dependencies. To
update all three, you need to update sale as this will recursively update the reverse dependencies,
sale_stock and sale_specific.

Another tricky part with managing dependencies is when you add a dependency to an add-on
that already has a version installed. Let’s understand this by continuing with the previous example.
Imagine that you add a dependency on stock_dropshipping in sale_specific. Updating
the sale_specific add-on will not automatically install the new dependency, and neither will
requesting the installation of sale_specific. In this situation, you can get very nasty error
messages because the Python code of the add-on is not successfully loaded, but the data of the add-on
and the models’ tables in the database are present. To resolve this, you need to stop the instance and
manually install the new dependency.

Installing add-on modules from GitHub
GitHub is a great source of third-party add-ons. A lot of Odoo partners use GitHub to share the
add-ons they maintain internally, and the Odoo Community Association (OCA) collectively maintains
several hundred add-ons on GitHub. Before you start writing your own add-on, ensure you check
that nothing already exists that you can use as is or as a starting point.

This recipe will show you how to clone the partner-contact project of the OCA from GitHub
and make the add-on modules it contains available in your instance.

Managing Odoo Server Instances46

How it works…

Usually, the developer of the add-on module occasionally releases the newest version of the add-on.
This update typically contains bug fixes and new features. Here, we will get a new version of the add-on
and update it in our instances.

If git pull --ff-only fails, you can revert to the previous version using the following command:

$ git reset --hard 17.0-before-update-$(date --iso)

Then, you can try git pull (without --ff-only), which will cause a merge, but this means that
you have local changes on the add-on.

See also

If the update step breaks, refer to the Updating Odoo from source recipe in Chapter 1, Installing the
Odoo Development Environment, for recovery instructions. Remember to always test an update on a
copy of a database production first.

Applying and trying proposed PRs
In the GitHub world, a PR is a request that’s made by a developer so that the maintainers of a project
can include some new developments. Such a PR may contain a bug fix or a new feature. These requests
are reviewed and tested before being pulled into the main branch.

This recipe explains how to apply a PR to your Odoo project in order to test an improvement or a bug fix.

Getting ready

As in the previous recipe, suppose you reported an issue with partner_address_street3
and received a notification that the issue was solved in a PR, which hasn’t been merged in the 17.0
branch of the project. The developer asks you to validate the fix in PR #123. You need to update a test
instance with this branch.

You should not try out such branches directly on a production database, so first create a test environment
with a copy of the production database (refer to Chapter 1, Installing the Odoo Development Environment).

How to do it…

To apply and try out a GitHub PR for an add-on, you need to perform the following steps:

1. Stop the instance.

2. Go to the directory where partner-contact was cloned:

$ cd ~/odoo-dev/my-odoo/src/partner-contact

3
Creating Odoo Add-On Modules

Now that we have a development environment and know how to manage Odoo server instances and
databases, we will learn how to create Odoo add-on modules.

Our main goal in this chapter is to understand how an add-on module is structured and the typical
incremental workflow to add components to it. The various components mentioned in this chapter’s
recipe names will be covered extensively in subsequent chapters.

An Odoo module can contain several elements:

• Business objects:

 � Declared as Python classes, these resources are automatically persisted by Odoo based on
their configuration

• Object views:

 � A definition of business objects’ UI display

• Data files (XML or CSV files declaring the model metadata):

 � Views or reports

 � Configuration data (module parametrization and security rules)

 � Demonstration data and more

• Web controllers:

 � Handle requests from web browsers, static web data images, or CSS or JavaScript files used
by the web interface or website

Creating Odoo Add-On Modules50

In this chapter, we will cover the following recipes:

• Creating and installing a new add-on module

• Completing the add-on module manifest

• Organizing the add-on module file structure

• Adding models

• Adding menu items and views

• Adding access security

• Using the scaffold command to create a module

Technical requirements
For this chapter, you are expected to have Odoo installed, and you are also expected to have followed
the recipes in Chapter 1, Installing the Odoo Development Environment. You are also expected to be
comfortable in discovering and installing extra add-on modules, as described in Chapter 2, Managing
Odoo Server Instances.

All the code used in this chapter can be downloaded from the GitHub repository at https://
github.com/PacktPublishing/Odoo-17-Development-Cookbook-Fifth-Edition/
tree/main/Chapter03.

What is an Odoo add-on module?
Except for the framework code, all of the code bases of Odoo are packed in the form of modules. These
modules can be installed or uninstalled at any time from the database. There are two main purposes for
these modules. You can either add new apps/business logic, or you can modify an existing application.
Put simply, in Odoo, everything starts and ends with modules.

Odoo offers various business solutions such as Sales, Purchase, POS, Accounting, Manufacturing,
Project, and Inventory. Creating a new module involves adding new features to a business or upgrading
the existing ones.

The latest version of Odoo introduces numerous new modules in both the Community and Enterprise
editions. These include Meeting Rooms, To-Do, and several WhatsApp-related integration modules.

In addition, this version comes packed with exciting new features such as a redesigned user interface,
improved search functionality, and new features for CRM, manufacturing, and e-commerce. The new
version also includes several other improvements, such as enhanced performance, improved security,
and more integrations.

Creating and installing a new add-on module 51

Odoo is used by companies of all sizes; each company has a different business flow and requirements.
To deal with this issue, Odoo splits the features of the application into different modules. These
modules can be loaded into the database on demand. Basically, the administrator can enable/disable
these features at any time. Consequently, the same software can be adjusted for different requirements.
Check out the following screenshot of Odoo modules; the first module in the column is the main
application, and others are designed to add extra features to that app. To get a modules list grouped
by the application’s category, go to the Apps menu and apply grouping by category:

Figure 3.1 – Grouping apps by category

If you plan on developing a new application in Odoo, you should create boundaries for various features.
This will be very helpful to divide your application into different add-on modules. Now that you know
the purpose of the add-on module in Odoo, we can start building our own one.

Creating and installing a new add-on module
In this recipe, we will create a new module, make it available in our Odoo instance, and install it.

Getting ready

To begin, we will need an Odoo instance that’s ready to use.

Creating and installing a new add-on module 53

6. Make the new module available in your Odoo instance. Log in to Odoo using admin, enable
Developer Mode in the About box, and in the Apps top menu, select Update Apps List. Now,
Odoo should know about our Odoo module:

Figure 3.2 – The dialog to update the app list

7. Select the Apps menu at the top, and in the search bar in the top-right corner, delete the default
Apps filter and search for my_hostel. Click on the Activate button, and the installation
will finish.

How it works...

An Odoo module is a directory that contains code files and other assets. The directory name that’s
used is the module’s technical name. The name key in the module manifest is its title.

The __manifest__.py file is the module manifest. This contains a Python dictionary with module
metadata, including category, version, the modules it depends on, and a list of the data files that it
will load. It contains important metadata about the add-on module and declares the data files that
should be loaded.

In this recipe, we used a minimal manifest file, but in real modules, we will need other important keys.
These are discussed in the next recipe, Completing the add-on module manifest.

The module directory must be Python-importable, so it also needs to have an __init__.py file,
even if it’s empty. To load a module, the Odoo server will import it. This will cause the code in the
__init__.py file to be executed, so it works as an entry point to run the module Python code. Due
to this, it will usually contain import statements to load the module Python files and submodules.

Known modules can be installed directly from the command line using the --init or -i option. For
example, if you want to install the my_hostel app, you can use -i my_hostel. This list is initially
set when you create a new database from the modules found on the add-on path provided at that time.
It can be updated in an existing database with the Update Module List menu.

Completing the add-on module manifest 55

• description: This is a long description written in plaintext or ReStructuredText (RST)
format. It is usually surrounded by triple quotes and is used in Python to delimit multiline
texts. For an RST quick-start reference, visit http://docutils.sourceforge.net/
docs/user/rst/quickstart.html.

• author: This is a string with the name of the authors. When there is more than one, it is
common practice to use a comma to separate their names, but note that it should still be a
string, not a Python list.

• website: This is a URL people should visit to learn more about the module or the authors.

• category: This is used to organize modules by areas of interest. The list of the standard category
names available can be seen at https://github.com/odoo/odoo/blob/17.0/
odoo/addons/base/data/ir_module_category_data.xml. However, it’s also
possible to define other new category names here.

• version: This is the module’s version number. It can be used by the Odoo app store to detect
newer versions of installed modules. If the version number does not begin with the Odoo
target version (for example, 17.0), it will be automatically added. Nevertheless, it will be more
informative if you explicitly state the Odoo target version – for example, by using 17.0.1.0.0
or 17.0.1.0, instead of 1.0.0 or 1.0, respectively.

• depends: This is a list with the technical names of the modules it directly depends on. If
your module does not depend on any other add-on module, then you should at least add a
base module. Don’t forget to include any module defining XML IDs, views, or models that
are referenced by this module. That will ensure that they all load in the correct order, avoiding
hard-to-debug errors.

• data: This is a list of relative paths for the data files to load during module installation or
upgrade. The paths are relative to the module root directory. Usually, these are XML and CSV
files, but it’s also possible to have YAML data files. These are discussed in depth in Chapter 6,
Managing Module Data.

• demo: This is the list of relative paths to the files with demonstration data to load. These will
only be loaded if the database was created with the Demo Data flag enabled.

The image that is used as the module icon is the PNG file at static/description/icon.png.

Odoo is expected to have significant changes between major versions, so modules that have been
built for one major version are not likely to be compatible with the next version without conversion
and migration work. For this reason, it’s important to be sure about a module’s Odoo target version
before installing it.

To ensure compatibility, we need to follow these steps:

• Firstly, check whether the installation is successful. If it is, then proceed to check whether the
module’s functionality works properly.

• However, if the installation is not successful, you will then need to adjust the code and functional
logic based on the errors you are receiving.

Creating Odoo Add-On Modules56

There’s more…

Instead of having a long description in the module manifest, it’s possible to have a separate description
file. Since version 8.0, it can be replaced by a README file, with either a .txt, .rst, or a .md
(markdown) extension. Otherwise, include a description/index.html file in the module.

This HTML description will override the description that’s defined in the manifest file.

There are a few more keys that are frequently used:

• licence: The default value is LGPL-3. This identifier is used for a license under the module
that is made available. Other license possibilities include AGPL-3, Odoo Proprietary
License v1.0 (mostly used in paid apps), and Other OSI Approved Licence.

• application: If this is True, the module is listed as an application. Usually, this is used
for the central module of a functional area.

• auto_install: If this is True, it indicates that this is a glue module, which is automatically
installed when all of its dependencies are installed.

• installable: If this is True (the default value), it indicates that the module is available
for installation.

• external_dependencies: Some Odoo modules internally use Python/bin libraries.
If your modules are using such libraries, you need to put them here. This will stop users from
installing the module if the listed modules are not installed on the host machine.

• {pre_init, post_init, uninstall}_hook: This is a Python function hook that’s
called during installation/uninstallation. For a more detailed example, refer to Chapter 8,
Advanced Server-Side Development Techniques.

• Assets: A definition of how all static files are loaded in various asset bundles. Odoo assets
are grouped by bundles. Each bundle (a list of file paths of specific types – xml, js, css, or
scss) is listed in the module manifest.

There are a number of special keys that are used for app store listing:

• price: This key is used to set the price for your add-on module. The value of this key should
be an integer value. If a price is not set, this means your app is free.

• currency: This is the currency for the price. Possible values are USD and EUR. The default
value for this key is EUR.

• live_test_url: If you want to provide a live test URL for your app, you can use this key
to show the Live Preview button on the app store.

• iap: Set your IAP developer key if the module is used to provide an IAP service.

• images: This gives the path of images. This image will be used as a cover image in Odoo’s
app store.

Organizing the add-on module file structure 59

The add-on files are organized into the following directories:

• models/ contains the backend code files, thus creating the models and their business logic. One
file per model is recommended with the same name as the model – for example, hostel.py
for the hostel.hostel model. These are addressed in depth in Chapter 4, Application Models.

• views/ contains the XML files for the user interface, with the actions, forms, lists, and so on.
Like models, it is advised to have one file per model. Filenames for website templates are expected
to end with the _template suffix. Backend views are explained in Chapter 9, Backend Views,
and website views are addressed in Chapter 14, CMS Website Development.

• data/ contains other data files with the module’s initial data. Data files are explained in
Chapter 6, Managing Module Data.

• demo/ contains data files with demonstration data, which is useful for tests, training, or
module evaluation.

• i18n/ is where Odoo will look for the translation .pot and .po files. Refer to Chapter 11,
Internationalization, for further details. These files don’t need to be mentioned in the manifest file.

• security/ contains the data files that define access control lists, which is usually an
ir.model.access.csv file and, possibly, an XML file to define access groups and record
rules for row-level security. Take a look at Chapter 10, Security Access, for more details on this.

• controllers/ contains the code files for the website controllers and for modules providing
that kind of feature. Web controllers are covered in Chapter 13, Web Server Development.

• static/ is where all web assets are expected to be placed. Unlike other directories, this directory
name is not just a convention. The files inside this directory are public and can be accessed
without a user login. This directory mostly contains files such as JavaScript, style sheets, and
images. They don’t need to be mentioned in the module manifest but will have to be referred
to in the web template. This is discussed in detail in Chapter 14, CMS Website Development.

• wizards/ contains all of the files related to wizards. In Odoo, wizards are used to hold intermediate
data. We learn more about wizards in Chapter 8, Advanced Server-Side Development Techniques.

• reports/: Odoo provides a feature to generate PDF documents such as sales orders and
invoices. This directory holds all the files related to PDF reports. We will learn more about
PDF reports in Chapter 12, Automation, Workflows, Emails, and Printing.

When adding new files to a module, don’t forget to declare them either in the __manifest__.py
file (for data files) or __init__.py file (for code files); otherwise, those files will be ignored and
won’t be loaded.

Creating Odoo Add-On Modules62

Next, we must make our module aware of this new Python file. This is done by the __init__.py
files. Since we placed the code inside the models/ subdirectory, we need the previous __init__
file to import that directory, which should, in turn, contain another __init__ file, importing each
of the code files there (just one, in our case).

Changes to Odoo models are activated by upgrading the module. The Odoo server will handle the
translation of the model class into database structure changes.

Although no example is provided here, business logic can also be added to these Python files, either
by adding new methods to the model’s class or by extending the existing methods, such as create()
or write(). This is addressed in Chapter 5, Basic Server-Side Development.

Adding access security
When adding a new data model, you need to define who can create, read, update, and delete records.
When creating a totally new application, this can involve defining new user groups. Consequently, if a
user doesn’t have these access rights, then Odoo will not display your menus and views. In the previous
recipe, we accessed our menu by converting an admin user into a superuser. After completing this
recipe, you will be able to access menus and views for the Hostel module directly as an admin user.

This recipe builds on the Hostel model from the previous recipes and defines a new security group
of users to control who can access or modify the records of Hostel.

Getting ready

The add-on module that implements the hostel.hostel model, which was provided in the
previous recipe, is needed because, in this recipe, we will add the security rules for it. The paths that
are used are relative to our add-on module location (for example, ~/odoo-dev/local-addons/
my_hostel/).

How to do it...

The security rules we want to add to this recipe are as follows:

• Everyone will be able to read hostel records.

• A new group of users called Hostel Manager will have the right to create, read, update, and
delete hostel records.

Creating Odoo Add-On Modules64

How it works…

We provide two new data files that we add to the add-on module’s manifest so that installing or
updating the module will load them in the database:

• The security/hostel_security.xml file defines a new security group by creating
a res.groups record. We also gave Hostel Manager rights to the admin user by using its
reference ID, base.user_admin, so that the admin user will have rights to the hostel.
hostel model.

• The ir.model.access.csv file associates permissions on models with groups. The first
line has an empty group_id:id column, which means that the rule applies to everyone.
The last line gives all privileges to members of the group we just created.

The order of the files in the data section of the manifest is important. The file for creating the security
groups must be loaded before the file listing the access rights, as the access rights definition depends
on the existence of the groups. Since the views can be specific to a security group, we recommend
putting the group’s definition file in the list to be on the safe side.

See also

This book has a chapter dedicated to security. For more information on security, refer to Chapter 10,
Security Access.

Adding menu items and views
Once we have models for our data structure needs, we want a user interface so that our users can interact
with them. Menus and views play a crucial role in structuring and enhancing the user experience.
Menus, from a technical perspective, are dynamic user interface components that present a structured
set of options or links, typically allowing users to access various features, functions, or content areas
within an application. This recipe builds on the Hostel model from the previous recipe and adds a
menu item to display a user interface, featuring list and form views.

Getting ready

The add-on module to implement the hostel.hostel model, which was provided in the previous
recipe, is needed. The paths that will be used are relative to our add-on module location (for example, ~/
odoo-dev/local-addons/my_hostel/).

How to do it...

To add a view, we will add an XML file with its definition to the module. Since it is a new model, we
must also add a menu option for the user to be able to access it.

For models, XML files adding views folder to create a view, action, and menu item.

Creating Odoo Add-On Modules68

The following screenshot has been provided as a reference:

Figure 3.3 – The option to activate superuser mode

After becoming a superuser, your menu will have a striped background, as shown in the
following screenshot:

Figure 3.4 – Superuser mode activated

If you try and upgrade the module now, you should be able to see a new menu option (you might need
to refresh your web browser). Clicking on the Hostel menu will open a list view for hostel models, as
shown in the following screenshot:

Adding menu items and views 69

Figure 3.5 – The menu to access Hostel

How it works...

At a low level, the user interface is defined by records stored in special models. The first two steps
create an empty XML file to define the records to be loaded, and then we add them to the module’s
list of data files to be installed.

Data files can be placed anywhere inside the module directory, but the convention is for the user
interface to be defined inside a views/ subdirectory. Usually, the name of these files is based on the
name of the model. In our case, we create the user interface for the hostel.hostel model, so we
created the views/hostel.xml file.

The next step is to define a window action to display the user interface in the main area of the web
client. The action has a target model defined by res_model, and the name attribute is used to display
the title to the user when the user opens the action. These are just the basic attributes. The window
action supports additional attributes, giving much more control over how the views are rendered, such
as what views are to be displayed, adding filters on the records that are available, or setting default
values. These are discussed in detail in Chapter 9, Backend Views.

In general, data records are defined using a <record> tag, and we created a record for the ir.actions.
act_window model in our example. This will create the window actions.

Similarly, menu items are stored in the ir.ui.menu model, and we can create these with the
<record> tag. However, there is a shortcut tag called <menuitem> available in Odoo, so we used
this in our example.

These are the menu item’s main attributes:

• name: This is the menu item text to be displayed.

• action: This is the identifier of the action to be executed. We use the ID of the window action
we created in the previous step.

• sequence: This is used to set the order in which the menu items of the same level are presented.

Creating Odoo Add-On Modules70

• parent: This is the identifier for the parent menu item. Our example menu item had no
parent, meaning that it would be displayed at the top of the menu.

• web_icon: This attribute is used to show the icon for the menu. This icon is only displayed
in the Odoo Enterprise edition.

At this point, we haven’t defined any of the views in our module. However, if you upgrade your module
at this stage, Odoo will automatically create them on the fly. Nevertheless, we will surely want to control
how our views look, so in the next two steps, a form and a tree view are created.

Both views are defined with a record on the ir.ui.view model. The attributes we used are as follows:

• name: This is a title identifying the view. In the source code of Odoo, you will find the XML
ID repeated here, but if you want, you can add a more human-readable title as a name.

• If the name field is omitted, Odoo will generate one using the model name and the type of
view. This is perfectly fine for the standard view of a new model. It is recommended to have a
more explicit name when you extend a view, as this will make your life easier when you look
for a specific view in the user interface of Odoo.

• model: This is the internal identifier of the target model, as defined in its _name attribute.

• arch: This is the view architecture, where its structure is actually defined. This is where different
types of views differ from each other.

Form views are defined with a top <form> element, and its canvas is a two-column grid. Inside the
form, <group> elements are used to vertically compose fields. Two groups result in two columns
with fields, which are added using the <field> element. Fields use a default widget according to
their data type, but a specific widget can be used with the help of the widget attribute.

Tree views are simpler; they are defined with a top <tree> element that contains <field> elements
for the columns to be displayed.

Finally, we added a Search view to expand the search option in the box at the top-right. Inside the
<search> top-level tag, we can have the <field> and <filter> elements. Field elements are
additional fields that can be searched from the input given in the search view. Filter elements are
predefined filter conditions that can be activated with a click. These subjects are discussed in detail
in Chapter 9, Backend Views.

Using the scaffold command to create a module
When creating a new Odoo module, there is some boilerplate code that needs to be set up. To help
quick-start new modules, Odoo provides the scaffold command.

This recipe shows you how to create a new module using the scaffold command, which will put
in place a skeleton of the file for directories to use.

Creating Odoo Add-On Modules72

You should now edit the various generated files and adapt them to the purpose of your new module.

How it works...

The scaffold command creates the skeleton for a new module based on a template.

By default, the new module is created in the current working directory, but we can provide a specific
directory to create the module, passing it as an additional parameter.

Consider the following example:

$ ~/odoo-dev/odoo/odoo-bin scaffold my_module ~/odoo-dev/local-addons

A default template is used, but a theme template is also available for website theme authoring.
To choose a specific template, the -t option can be used. We are also allowed to use a path for a
directory with a template.

This means that we can use our own templates with the scaffold command. The built-in templates
can be found in the /odoo/cli/templates Odoo subdirectory. To use our own template, we
can use something like the following command:

$ ~/odoo-dev/odoo/odoo-bin scaffold -t path/to/template my_module

By default, Odoo has two templates in the /odoo/cli/templates directory. One is the default
template, and the second is the theme template. However, you can create your own templates or use
them with -t, as shown in the preceding command.

4
Application Models

This chapter will guide you through some small enhancements to an existing add-on module. You
already registered your add-on module in the Odoo instance in Chapter 3, Creating Odoo Add-On
Modules. Now, you will explore the database aspects of the module in more depth. You will learn how
to create a new model (database table), add new fields, and apply constraints. You will also discover
how to use inheritance in Odoo to modify existing models. In this chapter, you will use the same
module that you created in the previous chapter.

This chapter covers the following topics:

• Defining the model representation and order

• Adding data fields to a model

• Adding a float field with configurable precision

• Adding a monetary field to a model

• Adding relational fields to a model

• Adding a hierarchy to a model

• Adding constraint validations to a model

• Adding computed fields to a model

• Exposing related fields stored in other models

• Adding dynamic relations using reference fields

• Adding features to a model using inheritance

• Using abstract models for reusable model features

• Copying the model definition using inheritance

Adding data fields to a model 81

How it works...

To add fields to models, you need to define an attribute of the corresponding type in their Python
classes. The available types of non-relational fields are as follows:

• Char: Stores string values.

• Text: Stores multiline string values.

• Selection: Stores one value from a list of predefined values and descriptions. This has a list of
values and description pairs. The value that is selected is what gets stored in the database, and
it can be a string or an integer. The description is automatically translatable.

Note
Odoo does not display the description if the value is zero for integer keys. The Selection
field also accepts a function reference as its selection attribute instead of a list. This allows
you to dynamically generate lists of options. You can find an example relating to this in the
Adding dynamic relations using reference fields recipe in this chapter, where a selection
attribute is also used.

• Html: Stores rich text in the HTML format.

• Binary: Stores binary files, such as images or documents.

• Boolean: Stores True/False values.

• Date: Stores date values as Python date objects. Use fields.Date.today() to set the
default value to the current date.

• Datetime: Stores datetime values as Python datetime objects in UTC time. Use fields.
Date.now() to set the default value to the current time.

• Integer: Stores integer values.

• Float: Stores numeric values with optional precision (total digits and decimal digits).

• Monetary: Stores an amount in a specific currency. This will be explained further in the Adding
a monetary field to a model recipe in this chapter.

Step 1 of this recipe shows the minimal syntax to add to each field type. The field definitions can
be expanded to add other optional attributes, as shown in step 2. Here’s an explanation of the field
attributes that were used:

• string is the field’s title and is used in UI view labels. It is optional. If not set, a label will be
derived from the field name by adding a title case and replacing the underscores with spaces.

Application Models82

• translate, when set to True, makes the field translatable. It can hold a different value,
depending on the user interface language.

• default is the default value. It can also be a function that is used to calculate the default
value – for example, default=_compute_default, where _compute_default is a
method that was defined on the model before the field definition.

• help is an explanation text that’s displayed in the UI tooltips.

• groups makes the field available only to some security groups. It is a string containing a
comma-separated list of XML IDs for security groups. This is addressed in more detail in
Chapter 10, Security Access.

• copy flags whether the field value is copied when the record is duplicated. By default, it is True
for non-relational and Many2one fields, and False for One2many and computed fields.

• index, when set to True, creates a database index for the field, which sometimes allows for
faster searches. It replaces the deprecated select=1 attribute.

• The readonly flag makes the field read-only by default in the user interface.

• The required flag makes the field mandatory by default in the user interface.

• The various whitelists that are mentioned here are defined in odoo/fields.py.

• The company_dependent flag makes the field store different values for each company. It
replaces the deprecated Property field type.

• The value isn’t stored on the model table. It is registered as `ir.property`. When the value
of the company_dependent field is needed, an `ir.property` is searched and linked
to the current company (and the current record if one property exists). If the value is changed
on the record, it either modifies the existing property for the current record (if one exists) or
creates a new one for the current company and res_id. If the value is changed on the company
side, it will impact all records on which the value hasn’t been changed.

• group_operator is an aggregate function used to display results in the group by mode.

Possible values for this attribute include count, count_distinct, array_agg, bool_and,
bool_or, max, min, avg, and sum. Integer, float, and monetary field types have the default
sum value for this attribute. This field is used by the :meth:~odoo.models.Model.
read_group method to group rows based on this field.

The supported aggregate functions are as follows:

 � array_agg: Concatenates all values, including nulls, into an array

 � count: Counts the number of rows

 � count_distinct: Counts the number of distinct rows

Application Models84

Finally, we updated the form view according to the newly added fields in the model. We placed all
fields in form view, but you can place them anywhere you want. Form views are explained in more
detail in Chapter 9, Backend Views.

There’s more...

The Date and Datetime field objects expose a few utility methods that can be convenient for Date
and Datetime:

For Date, we have the following:

• fields.Date.to_date(string_value) parses the string into a date object.

• fields.Date.to_string(date_value) converts the Python Date object to a string.

• fields.Date.today() returns the current day in a string format. This is appropriate for
use with default values.

• fields.Date.context_today(record, timestamp) returns the day of the
timestamp (or the current day, if the timestamp is omitted) in a string format, according to
the time zone of the record’s (or record set’s) context.

For Datetime, we have the following:

• fields.Datetime.to_datetime(string_value) parses the string into a
datetime object.

• fields.Datetime.to_string(datetime_value) converts the datetime object
to a string.

• fields.Datetime.now() returns the current day and time in a string format. This is
appropriate to use for default values.

• fields.Datetime.context_timestamp(record, timestamp) converts a
timestamp-naive datetime object into a time zone-aware datetime object. using the time zone
in the context of a record. This is not suitable for default values but can be used for instances
when you’re sending data to an external system.

In addition to the basic fields, there are also few relational fields such as Many2one, One2many,
and Many2many. These are covered in the Adding relational fields to a model recipe in this chapter.

You can also create fields with values that are computed automatically by using the compute field
attribute to define the computation function. This is covered in the Adding computed fields to a model
recipe of this chapter.

Adding a float field with configurable precision 85

Some fields are added by default in Odoo models, so you should avoid using these names for your
fields. These are as follows:

• id (the record’s automatically generated identifier)

• create_date (the record creation timestamp)

• create_uid (the user who created the record)

• write_date (the last recorded timestamp edit)

• write_uid (the user who last edited the record)

The automatic creation of these log fields can be disabled by setting the _log_access=False
model attribute.

Another special column that can be added to a model is active. It must be a Boolean field,
allowing users to mark records as inactive. It is used to enable the archive/unarchive feature
on the records. Its definition is as follows:

active = fields.Boolean('Active', default=True)

By default, only records with active set to True are visible. To retrieve them, we need to use a
domain filter with [('active', '=', False)]. Alternatively, if the 'active_test':
False value is added to the environment’s context, ORM will not filter out inactive records.

In some cases, you may not be able to modify the context to get both the active and the inactive
records. If so, you can use the ['|', ('active', '=', True), ('active', '=',
False)] domain.

Tip
[('active', 'in' (True, False))] does not work as you might expect. Odoo
explicitly looks for an ('active', '=', False) clause in the domain. It will default to
restricting the search to active records only.

Adding a float field with configurable precision
When using float fields, we may want to let the end user configure the decimal precision that
will be used. In this recipe, we will add a hostel_rating field to the hostel model, with user-
configurable decimal precision.

Getting ready

We will continue using the my_hostel add-on module from the previous recipe.

Application Models88

Create a security file for the new model and a form view to show it in the UI. Upgrade the
add-on module to apply the changes. The monetary field will appear like this:

Figure 4.3 – The currency symbol in the monetary field

How it works…

Odoo can display monetary fields correctly in the user interface because they have a second field
that indicates their currency. This field is similar to a float field.

The currency field is usually named currency_id, but we can use any other name as long as we
specify it with the optional currency_field parameter.

If your currency information is stored in a field named currency_id, you don’t need to specify
the currency_field attribute for the monetary field.

This is helpful when you have to store amounts in different currencies in the same record. For example,
if you want to have the currency of the sale order and the company, you can create two fields as
fields.Many2one(res.currency) and use one for each amount.

The currency definition (the decimal_precision field of the res.currency model)
determines the decimal precision for the amount.

Adding relational fields to a model
Relational fields are used to represent relations between Odoo models. There are three types of relations:

• many-to-one, or m2o for

• one-to-many, or o2m for short

• many-to-many, or m2m for short

Adding relational fields to a model 91

How it works…

An m2o field stores the database ID of another record in a column of the model’s table. This creates a
foreign key constraint in the database, which ensures that the stored ID is a valid reference to a record
in another table. By default, these relationship fields do not have a database index, but you can add
one by setting the index=True attribute.

You can also specify what happens when the record that is referenced by an m2o field is deleted. The
ondelete attribute controls this behavior. For instance, what should happen to students when their
room record is deleted? The default option is 'set null', which means the field will have an empty
value. Another option is 'restrict', which means the related record cannot be deleted. A third
option is 'cascade', which means the linked record will be deleted as well.

You can also use context and domain for other relational fields. These attributes are mainly useful
on the client side, and they provide default values for the views of the related records that are accessed
through a field:

• context sets some variables in the client context when you click on a field to see the related
record’s view. For example, you can use it to set default values for new records that are created
in that view.

• domain is a filter that limits the list of related records that you can choose from.

You can learn more about context and domain in Chapter 9, Backend Views.

An o2m field is the opposite of an m2o field, and it lets you access a list of related records from a model.
Unlike other fields, it does not have a column in the database table. It is just a convenient way to display
these related records in views. To use an o2m field, you need to have a corresponding m2o field
in the other model. In our example, we added an o2m field to the room model. The student_ids
o2m field has a reference to the room_id field of the hostel.room model.

A m2m field does not have a column in the model’s table. Instead, it uses another table in the database
to store the relationship between two models. This table has two columns for the IDs of the related
records. When you link a room and its amenity with an m2m field, a new record is created in this table
with the room’s ID and the amenity’s ID.

Odoo creates the relationship table for you. By default, the name of the relationship table is made
from the names of the two models, sorted alphabetically, with a _rel suffix. You can change this
name with the relation attribute.

Application Models92

You should use the relation attribute when the names of the two models are too long for the
default name. PostgreSQL has a limit of 63 characters for database identifiers. So, if the names of the
two models are more than 23 characters each, you should set a shorter name with the relation
attribute. We will explain this more in the next section.

There’s more...

You can also use the auto_join attribute for m2o fields. This attribute lets ORM use SQL joins on
this field. This means that ORM does not check the user access control and record access rules for this
field. This can help with performance issues in some cases, but it is better to avoid it.

We have seen the simplest way to define the relational fields. Now, let’s look at the attributes that are
specific to these fields.

These are the attributes for the o2m field:

• comodel_name: This is the name of the model that the field relates to. You need this attribute
for all relational fields. You can write it without the keyword, as the first argument.

• inverse_name: This is only for the o2m fields. It is the name of the m2o field in the other
model that links back to this model.

• limit: This is for the o2m and m2m fields. It sets a maximum number of records to read and
display in the user interface.

These are the attributes for the m2m field:

• comodel_name: This is the name of the model that the field relates to. It is the same as for
the o2m field.

• relation: This is the name of the table in the database that stores the relationship. You can
use this attribute to change the default name.

• column1: This is the name of column 1 in the relation table that links to this model.

• column2: This is the name of column 2 in the relation table that links to the other model.

Odoo typically handles the creation and management of these attributes automatically. It can identify
and utilize an existing relation table for an inverse m2m field. However, there are specific scenarios
where manual intervention is required.

When dealing with multiple m2m fields between the same two models, it becomes necessary to assign
distinct relation table names for each field.

In cases where the names of the two models exceed PostgreSQL’s limit of 63 characters for database
object names, you must set these attributes yourself. The default relation table name is typically
<model1>_<model2>rel. However, this table includes a primary key index with a longer name
(<model1><model2>rel<model1>id<model2>_id_key), which also needs to adhere to

Adding constraints validations to a model 95

3. We prevent cyclic dependencies in the hierarchy by using the _check_recursion method
from models.Model. This avoids us having a record that is both an ancestor and a descendant
of another record, which can cause infinite loops.

4. We add a category_id field with Many2one type to the hostel.hostel model, so that we
can assign a category to each hostel. This is just to complete our example.

There’s more…

You should use this technique for hierarchies that do not change much but are read and queried a
lot. This is because the nested set model in the database needs to update the parent_path column
(and the related database indexes) for all records when a category is added, deleted, or moved. This
can be slow and costly, especially when there are many concurrent transactions.

If you have a hierarchy that changes a lot, you might get better performance by using the standard
parent_id and child_ids relationships. This way, you can avoid table-level locks.

Adding constraints validations to a model
We want to make sure that our models do not have invalid or inconsistent data. Odoo has two kinds
of constraints to do this:

• Database-level constraints: These are the constraints that PostgreSQL supports.
The most common ones are the UNIQUE constraints, which prevent duplicate values. We can
also use CHECK and EXCLUDE constraints for other conditions. These constraints are fast and
reliable, but they are limited by what PostgreSQL can do.

• Server-level constraints: These are the constraints that we write in Python code.
We can use these constraints when the database-level ones are not enough for our needs. These
constraints are more flexible and powerful, but they are slower and more complex.

Getting ready

We will continue using the my_hostel add-on module from the previous recipe. We will use the
hostel room model and add some constraints to it. We will use the hostel room model from Chapter 3,
Creating Odoo Add-On Modules, and add some constraints to it.

We will use a UNIQUE constraint to ensure that room numbers are not repeated. We will also add a
Python model constraint to check that the rent amount is positive.

Adding computed fields to a model 99

How it works...

A computed field looks like a regular field, except that it has a compute attribute that specifies the
name of the method that computes its value.

However, computed fields are not the same as regular fields internally. Computed fields are calculated
on the fly at runtime, and because of that, they are not stored in the database, so you cannot search
or write on them by default. You need to do some extra work to enable writing and search support
for them. Let’s see how to do it.

The computation method is calculated on the fly at runtime, but ORM uses caching to avoid recalculating
it unnecessarily every time its value is accessed. So, it needs to know what other fields it relies on. It uses
the @depends decorator to determine when its cached values should be invalidated and recalculated.

Make sure that the compute method always assigns a value to the computed field. Otherwise, an error
will occur. This can happen when you have conditions in your code that sometimes fail to assign a
value to the computed field. This can be hard to debug.

Write support can be added by implementing the inverse method. This uses the value assigned
to the computed field to update the source fields. Of course, this only works for simple calculations.
However, there are still cases where it can be helpful. In our example, we make it possible to set the
discharge date by editing the duration days, since Duration is a computed field.

The inverse attribute is optional; if you don’t want to make the computed field editable, you can skip it.

It is also possible to make a non-stored computed field searchable by setting the search attribute to
the method name (similar to compute and inverse). Like inverse, search is also optional;
if you don’t want to make the computed field searchable, you can skip it.

However, this method is not supposed to perform the actual search. Instead, it receives the operator
and value used to search on the field as parameters and is supposed to return a domain, with the
alternative search conditions to use.

The optional store=True flag stores the field in the database. In this case, after being computed,
the field values are stored in the database, and from then on, they are retrieved in the same way as
regular fields, instead of being recomputed at runtime. Thanks to the @api.depends decorator,
ORM will know when these stored values need to be recomputed and updated. You can think of it as
a persistent cache. It also has the benefit of making the field usable for search conditions, including
sorting and grouping by operations. If you use store=True in your compute field, you no longer
need to implement the search method because the field is stored in a database, and you can search/
sort based on it.

The compute_sudo=True flag is for cases where the computations need to be done with higher
privileges. This might be needed when the computation needs to use data that may not be accessible
to the end user.

Adding features to a model using inheritance 103

Our recipe started by providing a function to browse all the model records that can be referenced, to
dynamically build a list that will be provided to the selection attribute. Although both forms are
allowed, we declared the function name inside quotes, instead of directly referencing the function
without quotes. This is more flexible, and it allows for the referenced function to be defined only later
in code, for example, which is something that is not possible when using a direct reference.

The function needs the @api.model decorator because it operates on the model level, not on the
record set level.

While this feature looks nice, it comes with a significant execution overhead. Displaying the reference
fields for a large number of records (for instance, in a list view) can create heavy database loads, as
each value has to be looked up in a separate query. It is also unable to take advantage of database
referential integrity, unlike regular relation fields.

Adding features to a model using inheritance
Odoo boasts a robust feature that significantly enhances its flexibility and functionality, which is
particularly beneficial for businesses seeking tailored solutions. This feature enables the integration
of module add-ons, allowing them to augment the capabilities of existing modules without the need
to alter their underlying codebase. This is achieved through the addition or modification of fields and
methods, as well as the extension of current methods with supplementary logic. This modular approach
not only facilitates a customizable and scalable system but also ensures that upgrades and maintenance
remain streamlined, preventing the complexities typically associated with custom modifications.

The official documentation describes three kinds of inheritance in Odoo:

• Class inheritance (extension)

• Prototype inheritance

• Delegation inheritance

We will see each one of these in a separate recipe. In this recipe, we will see class inheritance (extension).
This is used to add new fields or methods to existing models.

We’ll expand the existing partner model, res.partner, to include it in a computed field that
calculates how many hostel rooms are assigned to each user. This will help determine which section
each room is assigned to and which user occupies it.

Getting ready

We will continue using the my_hostel add-on module from the previous recipe.

Application Models106

How it works...

By using _name with the _inherit class attribute at the same time, you can copy the definition
of the model. When you use both attributes in the model, Odoo will copy the model definition of
_inherit and create a new model with the _name attribute.

In our example, Odoo will copy the definition of the Hostel.room model and create a new model,
hostel.room.copy. The new hostel.room.copy model has its own database table with its
own data that is totally independent from the hostel.room parent model. Since it still inherits
from the partner model, any subsequent modifications to it will also affect the new model.

Prototype inheritance copies all the properties of the parent class. It copies fields, attributes, and
methods. If you want to modify them in the child class, you can simply do so by adding a new
definition to the child class. For example, the hostel.room model has the _name_get method.
If you want to use a different version of _name_get in the child, you need to redefine the method
in the hostel.room.copy model.

Note
Prototype inheritance does not work if you use the same model name in the _inherit and
_name attributes. If you do use the same model name in the _inherit and _name attributes,
it will just behave like a normal extension inheritance.

There’s more…

In the official documentation, this is called prototype inheritance, but in practice, it is rarely used.
The reason for this is that delegation inheritance usually answers to that need in a more efficient way,
without the need to duplicate data structures. For more information on this, you can refer to the
next recipe, Using delegation inheritance to copy features to another model.

Using delegation inheritance to copy features to another
model
The third type of inheritance is Delegation inheritance. Instead of _inherit, it uses the _inherits
class attribute. There are cases where, rather than modifying an existing model, we want to create a new
model based on an existing one to use the features it already has. We can copy a model’s definitions with
prototype inheritance, but this will generate duplicate data structures. If you want to copy a model’s
definitions without duplicating data structures, then the answer lies in Odoo’s delegation inheritance,
which uses the _inherits model attribute (note the additional s).

Traditional inheritance is quite different from the similarly named concept in object-oriented
programming. Delegation inheritance, in turn, is similar, in that a new model can be created to include
the features from a parent model. It also supports polymorphic inheritance, where we inherit from
two or more other models.

5
Basic Server-Side Development

We learned how to declare or extend business models in custom modules in Chapter 4, Application
Models. Writing methods for calculated fields and ways to restrict the field values are both addressed
in that chapter’s tutorials. This chapter focuses on the fundamentals of server-side programming in
Odoo method declarations, record set manipulation, and extending inherited methods. You may use
this to create or alter business logins in the Odoo module.

In this chapter, we will cover the following tutorials:

• Specifying model methods and implementing API decorators

• Notifying errors to the user

• Getting a blank recordset for a different model

• Creating new records

• Updating values of recordset records

• Searching for records

• Combining recordsets

• Filtering recordsets

• Traversing recordset relations

• Sorting recordsets

• Extending a model’s established business logic

• Extending write() and create()

• Customizing how records are searched

• Fetching data in groups using read_group()

Basic Server-Side Development114

When writing a new method, if you don’t use a decorator, then the method is executed on a recordset.
In such methods, self is a recordset that can refer to an arbitrary number of database records (this
includes empty recordsets), and the code will often loop over the records in self to do something
on each individual record.

The @api.model decorator is similar, but it’s used on methods for which only the model is important,
not the contents of the recordset, which is not acted upon by the method. The concept is similar to
Python’s @classmethod decorator.

In Step 1, we created the is_allowed_transition() method. The purpose of this method is to
verify whether a transition from one state to another is valid. The tuples in the allowed list are the
available transitions. For example, we don’t want to allow a transition from closed to available,
which is why we haven’t put ('closed, 'available').

In Step 2, we created the change_state() method. The purpose of this method is to change the
status of the room. When this method is called, it changes the status of the room to the state given
by the new_state parameter. It only changes the room status if the transition is allowed. We used
a for loop here because self can contain multiple recordsets.

In Step 3, we created the methods that change the state of the room by calling the change_state()
method. In our case, this method will be triggered by the buttons that were added to the user interface.

In Step 4, we added <button> in the <form> view. Upon clicking this button, the Odoo web client
will invoke the Python function mentioned in the name attribute. Refer to the Adding buttons to forms
tutorial in Chapter 9, Backend Views, to learn how to call such a method from the user interface. We
have also added the state field with the statusbar widget to display the status of the room in
the <form> view.

When the user clicks on the button from the user interface, one of the methods from Step 3 will be
called. Here, self will be the recordset that contains the record of the hostel.room model. After
that, we call the change_state() method and pass the appropriate parameter based on the button
that was clicked.

When change_state() is called, self is the same recordset of the hostel.room model. The
body of the change_state() method loops over self to process each room in the recordset.
Looping on self looks strange at first, but you will get used to this pattern very quickly.

Inside the loop, change_state() calls is_allowed_transition(). The call is made using
the room local variable, but it can be made on any recordset for the hostel.room model, including,
for example, self, since is_allowed_transition() is decorated with @api.model. If the
transition is allowed, change_state() assigns the new state to the room by assigning a value to
the attribute of the recordset. This is only valid on recordsets with a length of 1, which is guaranteed
to be the case when iterating over self.

Basic Server-Side Development118

2. Add a button to the <form> view to invoke our method:

<button name="log_all_room_members" string="Log Members"
type="object"/>

Update the module to apply the changes. After that, you will see the Log Members button in the
room’s <form> view. You may view the member’s recordset in the server log by clicking that button.

How it works…

At startup, Odoo loads all the modules and combines the various classes that derive from Model, and
also defines or extends the given model. These classes are stored in the Odoo registry, indexed by name.
The env attribute of any recordset, available as self.env, is an instance of the Environment
class defined in the odoo.api module.

The Environment class plays a central role in Odoo development:

• It provides shortcut access to the registry by emulating a Python dictionary. If you know the
name of the model you’re looking for, self.env[model_name] will get you an empty
recordset for that model. Moreover, the recordset will share the environment of self.

• It has a cr attribute, which is a database cursor you may use to pass raw SQL queries. Refer
to the Executing raw SQL queries tutorial in Chapter 8, Advanced Server-Side Development
Techniques, for more information on this.

• It has a user attribute, which is a reference to the current user performing the call. Take a
look at Chapter 8, Advanced Server-Side Development Techniques, and the Changing the user
performing an action tutorial for more on this.

• It has a context attribute, which is a dictionary that contains the context of the call. This
includes information about the language of the user, the time zone, and the current selection of
records. Refer to the Calling a method with a modified context tutorial in Chapter 8, Advanced
Server-Side Development Techniques, for more on this.

The call to search() is explained in the Searching for records tutorial later.

See also

Sometimes, you want to use a modified version of the environment. One such example is that you want
an environment with a different user and language. In Chapter 8, Advanced Server-Side Development
Techniques, you will learn how to modify the environment at runtime.

Creating new records
Creating new records is a regular requirement when putting business logic processes into practice.
How you can build records for the hostel.room.category model is included in this tutorial.
We’ll add a function to the hostel.room.category model to generate dummy categories for
the purposes of our example. We will add the <form> view to activate this approach.

Creating new records 121

The keys in the dictionary identify the fields by name, while the accompanying values reflect the field’s
value. Depending on the field type, you need to pass different Python types for the values:

• A Text field value is given with Python strings.

• The Float and Integer field values are given using Python floats or integers.

• A boolean field value is given preferably using Python Booleans or integers.

• A Date field value is given with the Python datetime.date object.

• A Datetime field value is given with the Python datetime.datetime object.

• A Binary field value is passed as a Base64-encoded string. The base64 module from the
Python standard library provides methods such as encodebytes(bytestring) to encode
a string in Base64.

• A Many2one field value is given with an integer, which has to be the database ID of the
related record.

• One2many and Many2many fields use a special syntax. The value is a list that contains tuples
of three elements, as follows:

Table 5.1 – Relational field write

In this tutorial, we create the dictionaries for two categories in the hostel room we want to create,
and then we use these dictionaries in the child_ids entry of the dictionary for the hostel room
categories being created by using the (0, 0, dict_val) syntax we explained earlier.

When create() is called in Step 5, three records are created:

• One for the parent room category, which is returned by create

• Two records for the child room category, which are available in record.child_ids

There’s more…

If the model defined some default values for some fields, nothing special needs to be done. create()
will take care of computing the default values for the fields that aren’t present in the supplied dictionary.

Combining recordsets 127

Getting ready

To use this tutorial, you need to have two or more recordsets for the same model.

How to do it…

Follow these steps to perform common operations on recordsets:

1. To merge two recordsets into one while preserving their order, use the following operation:

result = recordset1 + recordset2

2. To merge two recordsets into one while ensuring that there are no duplicates in the result, use
the following operation:

result = recordset1 | recordset2

3. To find the records that are common to two recordsets, use the following operation:

result = recordset1 & recordset2

How it works…

The class for recordsets implements various Python operator redefinitions, which are used here. Here’s
a summary table of the most useful Python operators that can be used on recordsets:

Table 5.3 – Operators used with the domain

Basic Server-Side Development134

brings back the implementation of hostel.room from my_hostel. In this implementation,
make_closed() changes the state of the room to Closed. So, calling super() will invoke the
parent method and it will set the room state to Closed.

There’s more…

In this tutorial, we choose to extend the default implementation of the methods. In the make_closed()
and make_available() methods, we modified the returned result before the super() call. Note
that, when you call super(), it will execute the default implementation. It is also possible to perform
some actions after the super() call. Of course, we can also do both at the same time.

To alter a method’s behavior in the midst, though, is more challenging. To do this, we must restructure
the code in order to extract an extension point to a different function, which we can then override
in the extension module.

You might be inspired to rewrite a function from scratch. Always proceed with extreme caution. The
extension mechanism and maybe the add-ons that extend the method are broken if you do not use the
super() implementation of your method, which means that the extension methods will never be
invoked. Avoid doing this unless you are working in a controlled environment where you are certain
which add-ons are installed and you have verified that you are not breaking them. Additionally, if
necessary, make sure to clearly document everything you do.

What can you do before and after calling the original implementation of the method? There are lots
of things, including (but not limited to) the following:

• Change the arguments that are sent to the initial implementation (in the past)

• Alter the context that was previously provided to the original implementation

• Change the outcome that the initial implementation returned (after)

• Call another method (before and after)

• Create records (before and after)

• Raise a UserError error to cancel the execution in forbidden cases (before and after)

• Split self into smaller recordsets and call the original implementation on each of the subsets
in a different way (before)

Extending write() and create()
Extending the business logic defined in a model tutorial from this chapter showed us how to extend
methods that are defined on a model class. If you think about it, methods that are defined on the parent
class of the model are also part of the model. This means that all the base methods that are defined
on models.Model (actually, on models.BaseModel, which is the parent class of models.
Model) are also available and can be extended.

Customizing how records are searched 139

2. Add the previous_room_id Many2one field in the hostel.room model to test the
_name_search implementation:

previous_room = fields.Many2one('hostel.room', string='Previous
Room')

3. Add the following field to the user interface:

<field name="previous_room_id" />

4. Restart and update the module to reflect these changes.

You can invoke the _name_search method by searching in the previous_room_id Many2one field.

How it works…

The default implementation of name_search() actually only calls the _name_search()
method, which does the real job. This _name_search() method has an additional argument,
name_get_uid, which is used in some corner cases such as if you want to compute the results
using sudo() or with a different user.

We pass most of the arguments that we receive unchanged to the super() implementation of
the method:

• name is a string that contains the value the user has typed so far.

• args is either None or a search domain that’s used as a prefilter for the possible records. (It
can come from the domain parameter of the Many2one relation, for instance.)

• operator is a string containing the match operator. Generally, you will have 'ilike' or '='.

• limit is the maximum number of rows to retrieve.

• name_get_uid can be used to specify a different user when calling name_get() to compute
the strings to display in the widget.

Our implementation of the method does the following:

1. It generates a new empty list if args is None, and makes a copy of args otherwise. We make
a copy to avoid our modifications to the list having side effects on the caller.

2. Then, we check that name is not an empty string or that operator is not 'ilike'. This is
to avoid generating a dumb domain, such as [('name', ilike, '')], that doesn’t filter
anything. In this case, we jump straight to the super() call implementation.

3. If we have name, or if operator is not 'ilike', then we add some filtering criteria to
args. In our case, we add clauses that will search for the supplied name in the title of the
rooms, in their room number, or the members’ names.

Basic Server-Side Development142

 � field_name:agg: You can pass the field name with the aggregate function. For
example, in cost_price:avg, avg is an SQL aggregate function. A list of PostgreSQL
aggregate functions can be found at https://www.postgresql.org/docs/
current/static/functions-aggregate.html.

 � name:agg(field_name): This is the same as the previous one, but, with this syntax,
you can provide column aliases, such as average_price:avg(cost_price).

• groupby: This argument accepts a list of field descriptions. Records will be grouped based on
these fields. For the date and datetime column, you can pass groupby_function to
apply date groupings based on different time durations. You can do grouping based on months
for date type fields.

• read_group() also supports some optional arguments, as follows:

 � offset: This indicates an optional number of records to skip.

 � limit: This indicates an optional maximum number of records to return.

 � orderby: If this option is passed, the result will be sorted based on the given fields.

 � lazy: This accepts Boolean values and, by default, is True. If True is passed, the results
are only grouped by the first groupby, and the remaining groupby arguments are put in
the __context key. If False, all groupby functions are done in one call.

Performance tip
read_group() is a lot faster than reading and processing values from a recordset. So, for
KPIs or graphs, you should always use read_group().

6
Managing Module Data

In Odoo, managing module data involves various tasks such as creating, updating, and deleting records
in a database upon installation, upgrade, or removal of a module. This is typically done through XML
files called data files.

We’ll study how add-on modules might offer data during installation in this chapter. This helps us
when we provide metadata, such as view descriptions, menus, or actions, or when we provide default
settings. Another important usage is providing demonstration data, which is loaded when a database
is created with the Load demonstration data checkbox checked.

In this chapter, we will cover the following topics:

• Using external IDs and namespaces

• Loading data using XML files

• Using the noupdate and forcecreate flags

• Loading data using CSV files

• Add-on updates and data migration

• Deleting records from XML files

• Invoking functions from XML files

Technical requirements
The technical requirements for this chapter include the online Odoo platform.

All the code that’s used in this chapter can be downloaded from the following GitHub
repository: https://github.com/PacktPublishing/Odoo-17-Development-
Cookbook-Fifth-Edition/tree/main/Chapter06.

Using external IDs and namespaces 145

In the first example of this tutorial, the record has the ID hostel_room_1. As it is not namespaced,
the final external ID will have a module name like this – my_hostel.hostel_room_1. Then,
Odoo will try to find a record for my_hostel.hostel_room_1. As Odoo doesn’t have a record
for that external ID yet, it will generate a new record in the hostel.room model.

In the second example, we have used the external ID of the main company, which is base.main_
company. As its namespace suggests, it is loaded from the base module. As the external ID is already
present, instead of creating a record, Odoo will perform the write (UPDATE) operation so that the
company name will change to Packt Publishing.

Important note
A widespread application for partial data, apart from changing records defined by other modules,
is using a shortcut element to create a record conveniently and writing a field on that record, which
is not supported by the shortcut element – <act_window id="my_action" name="My
action" model="res.partner" /><record id="my_action" model="ir.
actions.act_window"> <field name="auto_search" eval="False"
/></record>.

In Odoo, the ref function is used to establish relationships between different records within the system.
It allows you to create references from one record to another, typically using a many2one relationship.

The ref function, as used in the Loading data using XML files tutorial of this chapter, also adds the
current module as a namespace if appropriate but raises an error if the resulting XML ID does not
exist already. This also applies to the id attribute if it is not namespaced already.

If you want to see the list of all external identifiers, start developer mode and open the menu at Settings
| Technical | Sequence & Identifiers | External Identifiers.

There’s more…

You will probably need to access records with an XML ID from your Python code sooner or later. Use
the self.env.ref() function in these cases. This returns a browse record (recordset) of the
referenced record. Note that, here, you always have to pass the full XML ID. Here’s an example of a
full XML ID – <module_name>.<record_id>.

Sooner or later, you’ll probably need to use Python code to retrieve records that have an XML ID. In
these circumstances, use the self.env.ref() method. This gives you access to the linked record’s
browsing record (recordset). Keep in mind that you must always pass the complete XML ID here.

You can see the XML ID of any record from the user interface. For that, you need to activate developer
mode in Odoo; refer to Chapter 1, Installing the Odoo Development Environment, to do so. After
activating developer mode, open the Form view of the record for which you want to find out the XML
ID. You will see a bug icon in the top bar. From that menu, click on the View Metadata option. See
the following screenshot for reference:

Managing Module Data146

Figure 6.1 – The menu to open a record’s metadata

See also

Consult the Using the noupdate and forcecreate flags tutorial of this chapter to find out why the company’s
name is only changed during the installation of the module.

Loading data using XML files
In the previous tutorial, we created the new room record with the hostel_room_1 external identifier.
In this tutorial, we will add a different type of data from the XML file. We’ll add a room and an author
as demonstration data. We’ll also add a well-known publisher as normal data to our module.

Managing Module Data148

When you update your module now, you’ll see the publisher we created, and if your database has
demo data enabled, as pointed out in Chapter 3, Creating Add-On Odoo Modules, you’ll also find this
room and its members.

How it works...

The data XML files uses the <record> tag to create a row in the database table. The <record>
tag has two mandatory attributes, id and model. For the id attribute, consult the Using external
IDs and namespaces tutorial; the model attribute refers to a model’s _name property. Then, we use
the <field> element to fill the columns in the database, as defined by the model you named. The
model also decides which fields it is mandatory to fill and also defines the default values. In this case,
you don’t need to give those fields a value explicitly.

There are two ways to register data XML files in a module manifest. The first is with the data key and
the second is with the demo key. The XML files in the data key are loaded every time you install or
update the module, while XML files with demo keys are loaded only if you enabled demo data for
your database.

In step 1, we registered a data XML file in the manifest with the demo key. Because we are using the
demo key, the XML file will be loaded only if you have enabled demo data for the database.

In step 2, the <field> element can contain a value as simple text in the case of scalar values. If
you need to pass the content of a file (to set an image, for example), use the file attribute on the
<field> element and pass the file’s name relative to the add-ons path.

To set up references, there are two possibilities. The simplest is using the ref attribute, which works
for many2one fields and just contains the XML ID of the record to be referenced. For one2many and
many2many fields, we need to use the eval attribute. Use the eval attribute in XML to evaluate
expressions dynamically. This is a general-purpose attribute that can be used to evaluate Python
code to use as the field’s value. Normally, content within <field> tags is treated as strings – for
example, <field name="value">4.5</field>. This will evaluate to the string 4.5 and not
float. If you want to evaluate the value to a float, a Boolean, or another type, except string, you
need to use the eval attribute, such as <field name="value" eval="4.5" /> <field
name="value" eval="False" />.

Here’s another example – think of strftime('%Y-01-01') as a way to populate a date field.
X2many fields expect to be populated by a list of three tuples, where the first value of the tuple determines
the operation to be carried out. Within an eval attribute, we have access to a function called ref,
which returns the database ID of an XML ID, given as a string. This allows us to refer to a record
without knowing its concrete ID, which is probably different in different databases, as shown here:

• (2, id, False): This deletes the linked record with id from the database. The third
element of the tuple is ignored.

Loading data using XML files 149

• (3, id, False): This detaches the record with id from the one2many field. Note that
this operation does not delete the record – it just leaves the existing record as it is. The last
element of the tuple is also ignored.

• (4, id, False): This adds a link to the existing record id, and the last element of the
tuple is ignored. This should be what you use most of the time, usually accompanied by the
ref function to get the database ID of a record known by its XML ID.

• (5, False, False): This cuts all links but keeps the linked records intact.

• (6, False, [id, ...]): This clears out currently referenced records to replace them
with the ones mentioned in the list of IDs. The second element of the tuple is ignored.

Important note
Note that order matters in data files and that records within data files can only refer to records
defined in data files earlier in the list. This is why you should always check whether your module
installs in an empty database because, during development, you often add records all over the
place, and the records defined afterward are already in the database from an earlier update.

Demo data is always loaded after the files from the data key, which is why the reference in
this example works.

There’s more...

While you can do basically anything with the record element, there are shortcut elements that
make it more convenient for a developer to create certain kinds of records. These include menu
items, templates, and act windows. Refer to Chapter 9, Backend Views, and Chapter 14, CMS Website
Development, for more information about these.

A field element can also contain the function element, which calls a function defined on a model
to provide a field’s value. Refer to the Invoking functions from XML files tutorial for an application in
which we simply call a function to directly write to the database, circumventing the loading mechanism.

The preceding list misses entries for 0 and 1 because they are not very useful when loading the data.
They are entered, as follows, for the sake of completeness:

• (0, False, {'key': value}): This creates a new record of the referenced model, with
its fields filled from the dictionary at position three. The second element of the tuple is ignored.
As these records don’t have an XML ID and are evaluated every time the module is updated,
leading to double entries, it’s better to avoid this. Instead, create the record in its own record
element, and link it as explained in the How it works… section of this tutorial.

• (1, id, {'key': value}): This can be used to write on an existing linked record. For
the same reasons that we mentioned earlier, you should avoid this syntax in your XML files.

Loading data using CSV files 151

When Odoo installs an add-on (called init mode), all records are written, whether noupdate is
true or false. When you update an add-on (called update mode), the existing XML IDs are
checked to see whether they have the noupdate flag set, and if so, elements that try to write to this
XML ID are ignored. This is not the case if the record in question was deleted by the user, which is why
you can force notrecreate noupdate records in update mode by setting the forcecreate
flag on the record to false.

Important note
In legacy add-ons (prior to and including version 8.0), you’ll often find an <openerp> element
enclosing a <data> element, which contains <record> and other elements. This is still
possible but deprecated. Now, <odoo>, <openerp>, and <data> have exactly the same
semantics; they are meant as a bracket to enclose XML data.

There’s more...

If you want to load records even with the noupdate flag, you can run the Odoo server with the
--init=your_addon or -i your_addon parameter. This will force Odoo to reload your
records. However, this will also cause deleted records to be recreated. Note that this can cause double
records and related installation errors if a module circumvents the XML ID mechanism – for example,
by creating records in Python code called by the <function> tag.

With this code, you can circumvent any noupdate flag, but first, make sure that this is really what
you want. Another option to solve the scenario presented here is to write a migration script, as outlined
in the Add-on updates and data migration tutorial.

See also

Odoo also uses XML IDs to keep track of which data is to be deleted after an add-on update. If
a record has an XML ID from the module’s namespace before the update but the XML ID is not
reinstated during the update, the record and its XML ID will be deleted from the database because
they’re considered obsolete. For a more in-depth discussion of this mechanism, refer to the Add-on
updates and data migration tutorial.

Loading data using CSV files
While you can do everything you need to with XML files, this format is not the most convenient when
you need to provide larger amounts of data, especially given that many people are more comfortable
preprocessing data in Calc or other spreadsheet software. Another advantage of the CSV format is
that it is what you get when you use the standard export function. In this tutorial, we’ll take a look
at importing table-like data.

Managing Module Data154

How it works...

The first crucial point is that you increase the version number of your add-on, as migrations run only
between different versions. During every update, Odoo writes the version number from the manifest
at the time of the update into the ir_module_module table. The version number is prefixed with
Odoo’s major and minor versions if the version number has three or fewer components. In the preceding
example, we explicitly named Odoo’s major and minor version, which is good practice, but a value of
1.0.1 would have had the same effect because, internally, Odoo prefixes short version numbers for
add-ons with its own major and minor version numbers. Generally, using the long notation is a good
idea because you can see at a glance which version of Odoo an add-on is meant for.

The two migration files are just code files that don’t need to be registered anywhere. When updating
an add-on, Odoo compares the add-on’s version, as noted in ir_module_module, with the version
in the add-on’s manifest. If the manifest’s version is higher (after adding Odoo’s major and minor
version), this add-on’s migrations folder will be searched to see whether it contains folders with
the version(s) in between, up to and including the version that is currently updated.

Then, within the folders found, Odoo searches for Python files whose names start with pre-, loads
them, and expects them to define a function called migrate, which has two parameters. This function
is called with a database cursor as the first argument and the currently installed version as the second
argument. This happens before Odoo even looks at the rest of the code that the add-on defines, so you
can assume that nothing changes in your database layout compared to the previous version.

After all the pre-migrate functions run successfully, Odoo loads the models and the data declared in
the add-on, which can cause changes in the database layout. Given that we renamed date_release
in pre-migrate.py, Odoo will just create a new column with that name but with the correct
data type.

After that, with the same search algorithm, the post-migrate files will be searched and executed
if found. In our case, we need to look at every value to see whether we can make something usable
out of it; otherwise, we keep the data as NULL. Don’t write scripts that iterate over a whole table if not
absolutely necessary; in this case, we would have written a very big, unreadable SQL switch.

Important tip
If you simply want to rename a column, you don’t need a migration script. In this case, you
can set the oldname parameter of the field in question to the field’s original column name;
Odoo then takes care of the renaming itself.

There’s more...

In both the pre- and post-migration steps, you only have access to a cursor, which is not very
convenient if you’re used to Odoo environments. It can lead to unexpected results to use models at
this stage because, in the pre-migration step, the add-on’s models are not yet loaded, and also, in the

7
Debugging Modules

In Chapter 5, Basic Server-Side Development, we saw how to write model methods to implement the
logic of our module. However, we may get stuck when we encounter errors or logical issues. In order
to resolve these errors, we need to perform a detailed inspection and this may take time. Luckily, Odoo
provides you with some debugging tools that can help you find the root cause of various issues. In
this chapter, we will look at various debugging tools and techniques in detail.

In this chapter, we will cover the following recipes:

• The auto-reload and --dev options

• Producing server logs to help debug methods

• Using the Odoo shell to interactively call methods

• Using the Python debugger to trace method execution

• Understanding the debug mode options

The auto-reload and --dev options
In the previous chapters, we saw how to add a model, fields, and views. Whenever we make changes
to Python files, we need to restart the server to apply those changes. If we make changes in XML files,
we need to restart the server and update the module to reflect those changes in the user interface. If
you are developing a large application, this can be time-consuming and frustrating. Odoo provides
a command-line option, --dev, to overcome these issues. The --dev option has several possible
values, and, in this recipe, we will see each of them.

Producing server logs to help debug methods 163

Important note
The __name__ variable is set automatically by the Python interpreter at module-import time,
and its value is the full name of the module. Since Odoo does a little trick with the imports, the
add-on modules are seen by Python as belonging to the odoo.addons Python package. So, if
the code of the recipe is in my_hostel/models/hostel.py, __name__ will be odoo.
addons.my_hostel.models.hostel.

By doing this, we get two benefits:

• The global logging configuration set on the odoo logger is applied to our logger because of the
hierarchical structure of loggers in the logging module

• The logs will be prefixed with the full module path, which is a great help when trying to find
where a given log line is produced

Step 3 uses the logger to produce log messages. The available methods for this are (by increasing log
level) debug, info, warning, error, and critical. All these methods accept a message in which you can
have % substitutions and additional arguments to be inserted into the message. You do not need to
handle the % substitution yourself; the logging module is smart enough to perform this operation if
the log has to be produced. If you are running with a log level of INFO, then DEBUG logs will avoid
substitutions that will consume CPU resources in the long run.

Another useful method shown in this recipe is _logger.exception(), which can be used in
an exception handler. The message will be logged with a level of ERROR, and the stack trace is also
printed in the application log.

There’s more...

You can control the logging level of the application from the command line or from the configuration
file. There are two main ways of doing this:

The first way is to use the --log-handler option. Its basic syntax is like this:
--log-handler=prefix:level. In this case, the prefix is a piece of the path of the logger
name, and the level is DEBUG, INFO, WARNING, ERROR, or CRITICAL. If you omit the prefix,
you set the default level for all loggers. For instance, to set the logging level of my_hostel loggers
to DEBUG and keep the default log level for the other add-ons, you can start Odoo as follows:

$ python odoo.py --log-handler=odoo.addons.my_hostel:DEBUG

It is possible to specify --log-handler multiple times on the command line. You can also configure
the log handler in the configuration file of your Odoo instance. In that case, you can use a comma-
separated list of prefix:level pairs. For example, the following line is the same configuration for a minimal
logging output as before. We maintain the most important messages and the error messages by default,
except for messages produced by werkzeug, for which we only want critical messages, and odoo.
service.server, for which we keep info-level messages, including server startup notifications:

log_handler = :ERROR,werkzeug:CRITICAL,odoo.service.server:INFO

Using the Python debugger to trace method execution 169

When you need to manually step through some code using the Python debugger, here are a few tips
that will make your life easier:

• Reduce the logging level to avoid having too many log lines, which pollutes the output of the
debugger. Starting at the ERROR level is generally fine. You may want to enable some specific
loggers with a higher verbosity, which you can do using the --log-handler command-line
option (refer to the Producing server logs to help debug methods recipe).

• Run the server with --workers=0 to avoid any multiprocessing issues that can cause the
same breakpoint to be reached twice in two different processes.

• Run the server with --max-cron-threads=0 to disable the processing of the ir.cron
periodic tasks, which may otherwise trigger while you are stepping through the method, which
produces unwanted logs and side effects.

Steps 3 to 8 use several pdb commands to step through the execution of the method. Here’s a summary
of the main commands of pdb. Most of these are also available using the first letter as a shortcut. We
indicate this in the following list by having the optional letters between parentheses:

• h(elp): This displays help with the pdb commands.

• a(rgs): This shows the value of the arguments of the current function/methods.

• l(ist): This displays the source code being executed in chunks of 11 lines, initially centered
on the current line. Successive calls will move further in the source code file. Optionally, you
can pass two integers at the start and end, which specify the region to display.

• p: This prints a variable.

• pp: This pretty-prints a variable (useful with lists and dictionaries).

• w(here): This shows the call stack, with the current line at the bottom and the Python
interpreter at the top.

• u(p): This moves up one level in the call stack.

• d(own): This moves down one level in the call stack.

• n(ext): This executes the current line of code and then stops.

• s(tep): This is to step inside the execution of a method call.

• r(eturn): This resumes the execution of the current method until it returns.

• c(ont(inue)): This resumes the execution of the program until the next breakpoint is hit.

• b(reak) <args>: This creates a new breakpoint and displays its identifier; args can be
one of the following:

 � <empty>: This lists all breakpoints.

 � line_number: This breaks at the specified line in the current file.

Understanding the debug mode options 171

Understanding the debug mode options
In Chapter 1, Installing the Odoo Development Environment, we saw how to enable debug/developer
options in Odoo. These options are very helpful in debugging and reveal some further technical
information. In this recipe, we will look at these options in detail.

How to do it...

Check the Activating the Odoo developer tools recipe of Chapter 1, Installing the Odoo Development
Environment, and activate developer mode. After activating developer mode, you will see a drop-down
menu with a bug icon in the top bar, as shown here:

Figure 7.1 – Available options after activating debug mode

In this menu, you will see various options. Give them a go to see them in action. The next section will
explain these options in more detail.

Debugging Modules172

How it works...

Let’s learn more about the options in the following points:

• Run JS Tests: This option will redirect you to the JavaScript QUnit test case page, as shown in
the following screenshot. It will start running all test cases one by one. Here, you can see the
progress and the status of the test cases. In Chapter 18, Automated Test Cases, we will see how
can we create our own QUnit JavaScript test cases:

Figure 7.2 – QUnit test case result screen

• Run JS Mobile Tests: Similar to the preceding option, but this one runs a QUnit test case for
a mobile environment.

• Run Click Anywhere Tests: This option will start clicking on all menus one by one. It will click
in all the views and search filters. If something is broken or there is any regression, it will show
the tracebacks. To stop this test, you will need to reload the page.

• Open View: This option will open a list of all available views. By selecting any of them, you
can open that view without defining any menus or actions.

• Disable Tours: Odoo uses tours to improve the onboarding of new users. If you want to disable
it, you can do it by using this option.

Understanding the debug mode options 173

• Start Tour: Odoo also uses tours for automated testing. We will create a custom onboarding
tour in Chapter 15, Web Client Development. This option will open a dialog box with a list of
all tours, as shown in the following screenshot. By clicking on the play button next to a tour,
Odoo will automatically perform all the steps of the tour:

Figure 7.3 – Dialog to manually launch tours

• Edit Action: In the Adding menu items and views recipe of Chapter 3, Creating Odoo Add-On
Modules, we added a menu item and an action to open views in Odoo. Details of these actions
are also stored in the database as a record. This option will open the record details of the action
we open to display the current view.

• View Fields: This option is used when you want to see the details of fields from the user
interface. It will show a list of fields for the current model. For example, if you open a tree or
form view for a hostel.hostel model, this option will show a list of fields for the hostel.
hostel model.

• Manage Filters: In Odoo, users can create custom filters from the search view. This option will
open a list of custom filters for the current model. Here, you can modify the custom filters.

• Technical Translations: This option will open a list of translated terms for the current model.
You can modify the technical translation terms for your model from here. You can refer to
Chapter 11, Internationalization, to learn more about translations.

• View Access Rights: This option will show a list of security access rights for the current model.

• View Record Rules: This option will show a list of security record rules for the current model.

Debugging Modules174

• Fields View Get: You can extend and modify an existing view from other add-on modules.
In some applications, these views are inherited by several add-on modules. Because of this, it
is very difficult to get a clear idea of the whole view definition. With this option, you will get
the final view definition after applying all view inheritances. Internally, it uses the fields_
view_get() method.

• Edit View: <view type>: This option will open the dialog with the ir.ui.view record of
the current view. This option is dynamic and it will show an option based on the view that is
currently open. This means that if you open Kanban View, you will get an Edit View: Kanban
option, and if you open Form View, you will get an Edit View: Form option.

Important tip
You can modify the view definition from the Edit View option. This updated definition will
be applicable on the current database and these changes will be removed when you update the
module. It’s therefore better to modify views from modules.

• Edit ControlPanelView: This option is the same as the preceding one, but it will open the
ir.ui.view record of the current model’s search view.

• Activate Assets Debugging: Odoo provides two types of developer mode: Developer mode and
Developer mode with assets. With this option, you can switch from Developer mode to Developer
mode with assets mode. Check the Activating the Odoo developer tools recipe in Chapter 1,
Installing the Odoo Development Environment, for more details.

• Activate Test Assets Debugging: As we know, Odoo uses tours for testing. Enabling this mode
will load test assets in Odoo. This option will show some more tours in the Start tour dialog.

• Regenerate Assets Bundles: Odoo manages all CSS and JavaScript through asset bundles. This
option deletes the old JavaScript and CSS assets and generates new ones. This option is helpful
when you are getting issues because of asset caching. We will learn more about asset bundles
in Chapter 14, CMS Website Development.

• Become Super User: This is a new option added from version 12. By activating this option,
you switch to a super user. You can access the records even if you don’t have access rights. This
option is not available for all users; it is only available for users who have Administration:
settings access rights. After activating this mode, you will see a striped top menu, as shown here:

Understanding the debug mode options 175

Figure 7.4 – Menu after activating a super user

• Leave Developer Tools: This option allows you to leave developer mode.

We have seen all of the options that are available under the debug menu. These options can be used
in several ways, such as debugging, testing, and fixing issues. They can also be used to explore the
source code for views.

8
Advanced Server-Side

Development Techniques

In Chapter 5, Basic Server-Side Development, you learned how to write methods for a model class,
how to extend methods from inherited models, and how to work with record sets. This chapter will
deal with more advanced topics, such as working with the environment of a record set, calling a
method upon a button click, and working with onchange methods. The recipes in this chapter will
help you manage more complex business problems. You will learn how to create an understanding
by incorporating visual elements and clarifying the process of creating interactive features within
Odoo’s application development process.

In this chapter, we will look at the following recipes:

• Changing the user that performs an action

• Calling a method with a modified context

• Executing raw SQL queries

• Writing a wizard to guide the user

• Defining onchange methods

• Calling onchange methods on the server side

• Defining onchange with the compute method

• Defining a model based on a SQL view

• Adding custom Settings options

• Implementing init hooks

Advanced Server-Side Development Techniques180

As shown in the following screenshot, Hostel Manager can also create room records:

Figure 8.2 – Hostel Manager can create room records

2. This user has Hostel User access rights:

Figure 8.3 – This user has Hostel User access rights

They can only see Hostel Room records:

Figure 8.4 – Hostel User can see only Hostel Room records

Suppose that we want to add a new feature so that non-hostel users can create a room by
themselves, for themselves. We will do this without giving them the access rights for the
hostel.room model.

Calling a method with a modified context 183

If you are not careful, records that are searched for in this environment may be linked to any company
present in the database, which means that you may be leaking information to a user; worse, you may
be silently corrupting the database by linking records that belong to different companies.

When using sudo(), exercise caution to avoid unintended consequences, such as inadvertently
linking records from different companies. Ensure proper data segregation and consider the potential
impact on data integrity and security rules before bypassing access rights.

Important tip
When using sudo(), always double-check to ensure that your calls to search() do not rely
on the standard record rules to filter the results.

Without using sudo(), search() calls would respect standard record rules, potentially
restricting access to records based on user permissions. This could lead to incomplete or
inaccurate search results, affecting data visibility and application functionality.

See also

Check out these references for more information:

• If you want to learn more about environments, refer to the Obtaining an empty recordset for a
model recipe in Chapter 5, Basic Server-Side Development

• For more information about access control lists and record rules, check out Chapter 10,
Security Access

Calling a method with a modified context
context is part of the environment of a recordset. It is used to pass extra information, such as the
time zone and the language of the user, from the user interface. You can also use the context to pass
the parameters specified in the actions. Several methods in the standard Odoo add-ons use the context
to adapt their business logic based on these context values. It is sometimes necessary to modify the
context on a recordset value to get the desired results from a method call or the desired value for
a computed field.

This recipe will show you how to change the behavior of a method based on values in the
environmental context.

Getting ready

For this recipe, we will use the my_hostel module from the previous recipe. On the form view of
the hostel.room model, we will add a button to remove room members. If a regular resident of
a hostel removes other occupants from their assigned room without permission or authorization, it

Advanced Server-Side Development Techniques188

There’s more...

The object in self.env.cr is a thin wrapper around a psycopg2 cursor. The following methods
are the ones that you will want to use most of the time:

• execute(query, params): This executes the SQL query with the parameters marked as
%s in the query substituted with the values in params, which is a tuple

Warning
Never do the substitution yourself; always use formatting options such as %s. If you use a
technique such as string concatenation, it can make the code vulnerable to SQL injection.

• fetchone(): This returns one row from the database, wrapped in a tuple (even if only one
column has been selected by the query)

• fetchall(): This returns all the rows from the database as a list of tuples

• dictfetchall(): This returns all the rows from the database as a list of dictionaries
mapping column names to values

Be very careful when dealing with raw SQL queries:

• You are bypassing all the security of the application. Ensure that you call search([('id',
'in', tuple(ids)]) with any list of IDs you are retrieving to filter out records to which
the user has no access.

• Any modifications you are making are bypassing the constraints set by the add-on modules,
except the NOT NULL, UNIQUE, and FOREIGN KEY constraints, which are enforced at the
database level. This is also the case for any computed field recomputation triggers, so you may
end up corrupting the database.

• Avoid the INSERT/UPDATE query – inserting or updating records via queries will not run
any business logic written by overriding the create() and write() methods. It will not
update stored compute fields and the ORM constraints will be bypassed too.

See also

For access rights management, refer to Chapter 10, Security Access.

Writing a wizard to guide the user
In the Using abstract models for reusable model features recipe in Chapter 4, Application Models, the
models.TransientModel base class was introduced. This class has a lot in common with normal
models, except that the records of transient models are periodically cleaned up in the database, hence
the name transient. These are used to create wizards or dialogue boxes, which are filled in the user
interface by the users and are generally used to perform actions on the persistent records of the database.

Writing a wizard to guide the user 191

In Step 3, we defined a view for our wizard. Refer to the Document-style forms recipe in Chapter 9,
Backend Views, for details. The important point here is the button in the footer; the type attribute is
set to 'object', which means that when the user clicks on the button, the method with the name
specified by the name attribute of the button will be called.

In Step 4, we ensured that we had an entry point for our wizard in the menu of the application. We use
target='new' in the action so that the form view is displayed as a dialogue box over the current
form. Refer to the Adding a menu item and window action recipe in Chapter 9, Backend Views, for details:

Figure 8.6 – Wizard for assigning a room to a student

In Step 5, we added access rights for the assign.room.student.wizard model. With this, the
manager user will get full rights to the assign.room.student.wizard model.

Note
Before Odoo v14, TransientModel didn’t require any access rules. Anyone can create a
record, and they can only access records created by themselves. With Odoo v14, access rights
are compulsory for TransientModel.

There’s more...

Here are some tips to enhance your wizards.

Using the context to compute default values

The wizard we are presenting requires the user to fill in the name of the member in the form. There is
a feature of the web client that we can use to save some typing. When an action is executed, context
is updated with some values that can be used by wizards:

• active_model: This is the name of the model related to the action. This is generally the
model being displayed onscreen.

• active_id: This indicates that a single record is active and provides the ID of that record.

Advanced Server-Side Development Techniques202

4. Restart the server and update the my_hostel module to apply the changes, as shown here:

Figure 8.7 – The hostel user access right settings option to enable and disable this feature

How it works...

In Odoo, all settings options are added in the res.config.settings model. res.config.
settings is a transient model. In Step 1, we created a new security group. We will use this group
to create the Hide and Show buttons.

In step 2, we added a new Boolean field in the res.config.settings model by inheriting it.
We added an implied_group attribute with a value of my_hostel.group_hostel_user.
This group will be assigned to all odoo users when the admin enables or disables options with the
Boolean field.

Settings uses a form view to display settings options on a user interface. All of these options are added
in a single form view with an external ID of base.res_config_settings_view_form.

In Step 3, we added our option to the user interface by inheriting this setting from the view. We used
xpath to add our setting option. We will cover this in more detail in Chapter 9, Backend Views. In
the form definition, you will find that the attribute data-key value of this option will be your module
name. This is only needed when you are adding a whole new tab in Settings. Otherwise, you can just
add your option to the Settings tab of the existing module with xpath.

9
Backend Views

In all previous chapters, you have seen the server and database side of Odoo. In this chapter, you will
see the UI side of Odoo. You will learn how to create different types of views. Aside from the views,
this chapter also covers other components, such as action buttons, menus, and widgets, which will
help you make your application more user-friendly. After completing this chapter, you will be able to
design the UI of an Odoo backend. Note that this chapter does not cover the website part of Odoo;
we have a separate chapter (14) for that.

In this chapter, we will cover the following recipes:

• Adding a menu item and window actions

• Having an action open a specific view

• Adding content and widgets to a form view

• Adding buttons to forms

• Passing parameters to forms and actions – Context

• Defining filters on record lists – Domain

• Defining list views

• Defining search views

• Adding a search filter side panel

• Changing existing views – View inheritance

• Defining document-style forms

• Dynamic form elements using attributes

• Defining embedded views

• Displaying attachments on the side of the form view

• Defining kanban views

Backend Views208

• Showing kanban cards in columns according to their state

• Defining calendar views

• Defining graph view and pivot view

• Defining the cohort view

• Defining the gantt view

• Defining the activity view

• Defining the map view

Technical requirements
Throughout this chapter, we will assume that you have a database with the base add-on installed and
an empty Odoo add-on module where you can add XML code from the recipes to a data file referenced
in the add-on’s manifest. Refer to Chapter 3, Creating Odoo Add-On Modules, for more information
on how to activate changes in your add-on.

The technical requirements for this chapter include an online Odoo platform.

All of the code used in this chapter can be downloaded from the GitHub repository at https://
github.com/PacktPublishing/Odoo-17-Development-Cookbook-Fifth-Edition/
tree/main/Chapter09.

Adding a menu item and window actions
The most obvious way to make a new feature available to users is by adding a menu item. When you
click on a Menu item, something happens. This recipe walks you through how to define that something.

We will create a top-level menu and its sub-menu, which will open a list of all hostel rooms.

This can also be done using the web user interface through the Settings menu, but we prefer to use
XML data files since this is what we’ll have to use when creating our add-on modules.

Getting ready

In this recipe, we will need a module with a dependency on the base module, as the my_hostel
module adds new models to the hostel.room. So, if you are using an existing module, please add
the base dependency in the manifest. Alternatively, you can grab the initial module from https://
github.com/PacktPublishing/Odoo-17-Development-Cookbook-Fifth-Edition/
tree/main/Chapter09/00_initial_module.

Adding a menu item and window actions 211

In the same way, you can create a menuitem instance through <record>.

Important note
Be aware that names used with the menuitem shortcut may not map to the field names that
are used when using a record element; parent should be parent_id and groups
should be groups_id.

To build the menu, the web client reads all the records from ir.ui.menu and infers their hierarchy
from the parent_id field. The menus are also filtered based on user permissions to models and
groups assigned to menus and actions. When a user clicks on a menu item, its action is executed.

There’s more…

Window actions also support a target attribute to specify how the view is to be presented. The
possible choices are as follows:

• current: This is the default and opens the view in the web client’s main content area.

• new: This opens the view in a popup.

• inline: This is like current, but it opens a form in edit mode and disables the Action menu.

• Fullscreen: The action will cover the whole browser window, so this will overlay the menus,
too. Sometimes, this is called tablet mode.

• main: This is like current, but it also clears out the breadcrumbs.

There are also some additional attributes available for window actions that are not supported by the
ir.actions.act_window shortcut tag. To use them, we must use the record element with
the following fields:

• res_id: If opening a form, you can use it to open a specific record by setting its ID here.
This can be useful for multi-step wizards or in cases when you have to view or edit a specific
record frequently.

• search_view_id: This specifies a specific search view to use for tree and graph views.

Keep in mind that the menu in the top left (or the apps icon in the Enterprise version) and the menu
in the bar at the top are both made up of menu items. The only difference is that the items in the
menu in the top left don’t have any parent menus, while the ones on the top bar have the respective
menu items from the top bar as a parent. In the left bar, the hierarchical structure is more obvious.

Additionally, bear in mind that for design reasons, the first-level menus will open the dropdown menu
if your second-level menu has child menus. In any case, Odoo will open the first menu item’s action
based on the sequence of child menu items.

Backend Views214

How it works...

This time, we used the generic XML code for any type of record, that is, the record element with the
required id and model attributes. The id attribute on the record element is an arbitrary string
that must be unique for your add-on. The model attribute refers to the name of the model you want
to create. Given that we want to create a view, we need to create a record of the ir.ui.view model.
Within this element, you set fields as defined in the model you chose through the model attribute.
For ir.ui.view, the crucial fields are model and arch. The model field contains the model for
which you want to define a view, while the arch field contains the definition of the view itself. We’ll
come to its contents in a short while.

The name field, while not strictly necessary, is helpful when debugging problems with views. So, set
it to a string that tells you what this view is intended to do. This field’s content is not shown to the
user, so you can fill in any technical hints that you deem sensible. If you set nothing here, you’ll get a
default name that contains the model name and view type.

ir.actions.act_window.view

The second record we defined works in tandem with act_window, which we defined earlier in
the Adding a menu item and window action recipe. We already know that by setting the view_id
field there, we can select which view is used for the first view mode. However, given that we set the
view_mode field to the tree, form view, view_id would have to pick a tree view, but we want
to set the form view, which comes second here.

If you find yourself in a situation like this, use the ir.actions.act_window.view model, which
gives you fine-grained control over which views to load for which view type. The first two fields defined
here are examples of the generic way to refer to other objects; you keep the element’s body empty but
add an attribute called ref, which contains the XML ID of the object you want to reference. So, what
happens here is we refer to our action from the previous recipe in the act_window_id field and
refer to the view we just created in the view_id field. Then, though not strictly necessary, we add
a sequence number to position this view assignment relative to the other view assignments for the
same action. This is only relevant if you assign views for different view modes by creating multiple
ir.actions.act_window.view records.

Important note
Once you define the ir.actions.act_window.view records, they take precedence over
what you filled in the action’s view_mode field. So, with the preceding records, you won’t see
a list at all, but only a form. You should add another ir.actions.act_window.view
record that points to a list view for the hostel.room model.

Adding content and widgets to a form view 217

form

When you define a form view, it is mandatory that the first element within the arch field is a form
element. This is used internally to derive the record’s type field.

In addition to the following elements, you can use arbitrary HTML within the form tag. The algorithm
has it that every element unknown to Odoo is considered plain HTML and is simply passed through
to the browser. Be careful with that, as the HTML you fill in can interact with the HTML code the
Odoo elements generate, which might distort the rendering.

header

This element is a container for elements that should be shown in a form’s header, which is rendered
as a white bar. Usually, as in this example, you place action buttons here. Alternatively, if your model
has a state field, you could opt for a status bar.

button

The button element is used to allow the user to trigger an action. Refer to the Adding buttons to
forms recipe for details.

<group>

The <group> element is Odoo’s main element and is used for organizing content. Fields placed within
a <group> element are rendered with their title, and all fields within the same group are aligned so
that there’s also a visual indicator that they belong together. You can also nest <group> elements;
this causes Odoo to render the contained fields in adjacent columns.

In general, you should use the <group> mechanism to display all of your fields in the form view
and only revert to the other elements, such as <notebook>, <label>, <newline>, and more,
when necessary.

If you assign the string attribute to a group, its content will be rendered as a heading for the group.

You should develop the habit of assigning a name to every logical group of fields, too. This name is not
visible to the user but is very helpful when we override views in the following recipes. Keep the name
unique within the form definition to avoid confusion about which group you refer to. Don’t use the
string attribute for this because the value of the string will eventually change because of translations.

field

In order to actually show and manipulate data, your form view should contain some field elements.
Here is an example:

<field name="other_info" widget="html"/>

Backend Views220

There’s more…

Since form views are basically HTML with some extensions, Odoo also makes extensive use of CSS
classes. Two very useful ones are oe_read_only and oe_edit_only. Elements with these
classes will be visible only in read-only mode or edit mode, respectively. For example, to have the
label visible only in edit mode, use the following:

<label f"r="n"me" cla"s="oe_edit_o"ly" />

Another very useful class is oe_inline, which you can use on fields to make them render as an
inline element to avoid causing unwanted line breaks. Use this class when you embed a field into text
or other markup tags.

Furthermore, the form element can have the create, edit, and delete attributes. If you set
one of these to false, the corresponding action ’on’t be available for this form. Without this being
explicitly set, the availability of the action is inferred from the u’er’s permissions. Note that this is
purely for straightening up the UI; ’on’t use this for security.

See also

The widgets and views already offer a lot of functionality, but sooner or later, you will have requirements
that cannot be fulfilled with the existing widgets and views. Refer to the following recipes to create
your own views and widgets:

• Refer to the Adding buttons to forms recipe in this chapter for more details about using the
button element to trigger an action.

• To define your own widgets, refer to the Creating custom widgets recipe of Chapter 15, Web
Client Development.

• Refer to the Creating a new view recipe of Chapter 15, Web Client Development, to create your
own view.

Adding buttons to forms
Buttons are used in the form view to handle user actions. We added a button in the form view in the
previous recipe, but there are quite a few different types of buttons that we can use. This recipe will
add another button that will help the user to open another view. It will also put the following code in
the recipe’s header element.

How to do it...

Add a button that refers to an action:

<button type="action" name="%(my_hostel.hostel_room_category_action)d"
string="Open Hotel Room Category" />

Passing parameters to forms and actions – context 221

How it works...

The button’s type attribute determines the semantics of the other fields, so we’ll first take a look at
the possible values:

• action: This makes the button call an action, as defined in the ir.actions.* namespace.
The name attribute needs to contain the action’s database ID, which you can conveniently have
Odoo look up with a Python-format string that contains the XML ID of the action in question.

• object: This calls a method from the current model. The name attribute contains the
function’s name.

• string: The string attribute is used to assign the text the user sees.

There’s more...

Use the btn-primary CSS classes to render highlighted button and btn-default to render a
normal button. This is commonly used for cancel buttons in wizards or to offer secondary actions in
a visually unobtrusive way. Setting the oe_link class causes the button to look like a link. You can
also use other bootstrap button classes to get different button colors.

A call with a button of the object type can return a dictionary that describes an action, which will
then be executed on the client side. This way, you can implement multiscreen wizards or just open
another record.

Important note
Note that clicking on a button always causes the client to issue a write or create call before
running the method.

You can also add content within the button tag by replacing the string attribute. This is commonly
used in button boxes, as described in the Document style forms recipe.

Passing parameters to forms and actions – context
Internally, every method in Odoo has access to a dictionary called context, which is propagated from
every action to the methods involved in delivering that action. The UI also has access to it, and it
can be modified in various ways by setting values in the context. In this recipe, we’ll explore some of
the applications of this mechanism by toying with the language, default values, and implicit filters.

Passing parameters to forms and actions – context 223

By setting default_lang, we set a default value for every record created within the scope of this
context. The general pattern is default_$fieldname: my_default_value, which enables
you to set default values for newly created partners in this case. Given that our menu is about hostel
rooms, we have added default_room_rating: 1 as the value for the Hostel Average
Rating field by default. However, this is a model-wide default for hostel.room, so this wouldn’t
have changed anything. For scalar fields, the syntax for this is the same as what you would write in
Python code: string fields go in quotes, number fields stay as they are, and Boolean fields are
either True or False. For relational fields, the syntax is slightly more complicated; refer to Chapter 6,
Managing Module Data, to learn how to write them.

Important note
Note that the default values set in the context override the default values set in the model
definition, so you can have different default values in different situations.

The last key is active_test, which has very special semantics. For every model that has a field
called active, Odoo automatically filters out records where this field is False. This is why the
partner from where you unchecked this field disappeared from the list. By setting this key, we can
suppress this behavior.

Important note
This is useful for the UI in its own right but even more useful in your Python code when you
need to ensure that an operation is applied to all the records, not just the active ones.

There’s more...

When defining a context, you have access to some variables, with the most important one being uid,
which evaluates the current user’s ID. You’ll need this to set default filters (refer to the next recipe,
Defining filters on record lists – Domain). Furthermore, you have access to the context_today
function and the current_date variable, where the first is a date object that represents the current
date, as seen from the user’s time zone, and the latter is the current date, as seen in UTC, formatted
as YYYY-MM-DD. To set a default value for a date field to the current date, use current_date,
and for default filters, use context_today().

Furthermore, you can do some date calculations with a subset of Python’s datetime, time, and
relativedelta classes.

Backend Views224

Important note
Most of the domains are evaluated on the client side. The server-side domain evaluation is
restricted for security reasons. When client-side evaluation was introduced, the best option in
order to not break the whole system was to implement a part of Python in JavaScript. There is
a small JavaScript Python interpreter built into Odoo that works well for simple expressions,
and that is usually enough.

Beware of the use of the context variable in the <record id="action_name"
model="ir.actions.act_window.view"> shortcut. These are evaluated at installation
time, which is nearly never what you want. If you need variables in your context, use the
<record /> syntax.

We can also add different contexts for the buttons. It works the same way as how we added context keys
to our action. This causes the function or action that the button calls to be run in the context given.

Most form element attributes that are evaluated as Python also have access to the context dictionary.
The invisible and readonly attributes are examples of these. So, in cases where you want an
element to show up in a form sometimes but not at other times, set the invisible attribute to
context.get('my_key'). For actions that lead to a case in which the field is supposed to be
invisible, set the context key to my_key: True. This strategy enables you to adapt your form without
having to rewrite it for different occasions.

You can also set a context for relational fields, which influences how the field is loaded. By setting
the form_view_ref or tree_view_ref keys to the full XML ID of a view, you can select a
specific view for this field. This is necessary when you have multiple views of the same type for the
same object. Without this key, you get the view with the lowest sequence number, which might not
always be desirable.

See also

• The context is also used to set a default search filter. You can learn more about the default search
filter in the Defining search views recipe of this chapter.

• For more details on setting default recipes, refer to the next recipe, Defining filters on record
lists – Domain.

• To learn how to install the French language, consult Chapter 11, Internationalization.

• You can refer to Chapter 6, Managing Module Data to learn how to write the syntax for
relational fields.

Defining filters on record lists – domain
We’ve already seen an example of a domain in the first recipe of this chapter, which was [('state',
'=', 'draft')]. Often, you need to display a subset of all available records from an action or

Backend Views226

For example, say we have a complex domain such as this: ['|', ('user_id', '=', uid),
'&', ('lang', '!=', 'fr_FR'), '|', ('phone', '=', False), ('email',
'=', False)]. See the following figure to learn about how this domain is evaluated:

Figure 9.2 – The evaluation of a domain

There is also a ! operator for negation, but given logical equivalences and negated comparison operators
such as != and not in, it is not really necessary.

Important note
Note that this is a unary prefix operator, so it only applies to the following expression in the
domain and not to everything that follows.

Note that the right operand doesn’t need to be a fixed value when you write a domain for a window
action or other client-side domains. You can use the same minimal Python as is used in the Passing
parameters to forms and actions – Context recipe, so you can write filters such as changed last week
or my partners.

There’s more...

The preceding domains work only for the fields of the model itself, while we often need to filter based
on the properties of linked records. To do this, you can use the notation that’s also used in @api.
depends definitions or related fields: create a dotted path from the current model to the model
you want to filter for. To search partners that have a salesperson who is a member of a group starting
with the letter G, you would use the [('user_id.groups_id.name', '=like', 'G%')]
domain. The path can be long, so you only have to be sure that there are relation fields between the
current model and the model you want to filter for.

Defining filters on record lists – domain 227

Operators

The following table lists the available operators and their semantics:

Table 9.1 – Operators and their semantics

Note that some of the operators work only with certain fields and values. For example, the domain
[('category_id', 'in', 1)] is invalid and will generate an error, while the domain
[('category_id', 'in', [1])] is valid.

Pitfalls of searching using domains

This all works fine for traditional fields, but a notorious problem is searching for the value of a non-stored
function field. People often omit the search function. This is simple enough to fix by providing the
search function in your own code, as described in Chapter 4, Application Models.

Another issue that might baffle developers is Odoo’s behavior when searching through one2many
or many2many fields with a negative operator. Imagine that you have a partner with the A tag, and
you search for [('category_id.name', '!=', 'B')]. Your partner shows up in the result,
and this is what you expected, but if you add the B tag to this partner, it still shows up in your results

Defining search views 233

There’s more...

You can group filters using the group tag, which causes them to be rendered slightly closer together
than the other filters, but this has semantic implications, too. If you put multiple filters in the same
group and activate more than one of them, their domains will be combined with the | operator, while
the filters and fields not in the same group are combined with the & operator. Sometimes, you might
want disjunction for your filters, which is where they filter for mutually exclusive sets, in which case,
selecting both of them will always lead to an empty result set. Within the same group, you can achieve
the same effect with the separator element.

Important note
Note that if the user fills in multiple queries for the same field, they will be combined with |,
too, so you don’t need to worry about that.

Apart from the field attribute, the filter element can have a context attribute, whose content
will be merged with the current context and eventually other context attributes in the search view. This
is essential for views that support grouping (refer to the Defining kanban view and Defining graph view
recipes) because the resulting context determines the field(s) to be grouped using the group_by key.
We’ll look into the details of grouping in the appropriate recipes, but the context has other uses, too.
For example, you can write a function field that returns different values depending on the context,
and then you can change the values by activating a filter.

The search view itself also responds to context keys. In a very similar way to default values when creating
records, you can pass default values for a search view through the context. If we had set a context of
{'search_default_room_rating': 1} in our previous action, the room_rating filter
would have been pre-selected in the search view. This works only if the filter has a name, though,
which is why you should always set it. To set defaults for fields in the search view, use search_
default_$fieldname.

Furthermore, the field and filter elements can have a groups property with the same semantics
as in the form views in order to make the element only visible to certain groups.

See also

• For further details about manipulating the context, see the Passing parameters to forms and
actions – Context recipe.

• Users who speak languages with heavy use of diacritical marks will probably want to have
Odoo search for e, è, é, and ê when filling in the e character. This is a configuration of the
PostgreSQL server called unaccent, which Odoo has special support for, but this is outside the
scope of this book. Refer to https://www.postgresql.org/docs/10/unaccent.
html for more information about unaccent.

Changing existing views – view inheritance 237

for the partners on the mobile field, and in the partner’s list view, you will see that the order of the
phone number and email has changed.

How it works...

In step 1, we added a basic structure for form inheritance. The crucial field here is, as you’ve probably
guessed, inherit_id. You need to pass the XML ID of the view you want to modify (inherit from)
to it. The arch field contains instructions on how to modify the existing XML nodes within the view
you’re inheriting from. You should actually think of the whole process as simple XML processing
because all the semantic parts only come a lot later.

The most canonical instruction within the arch field of an inherited view is the field element,
which has the required attributes: name and position. As you can only have every field appear
once in a form, the name already uniquely identifies a field. With the position attribute, we can
place whatever we put within the field element, either before, inside, or after regarding the
field we named. The default is inside, but for readability, you should always name the position you
require. Remember that we’re not talking semantics here; this is about the position in the XML tree
relative to the field we have named. How this will be rendered afterward is a completely different matter.

Step 2 demonstrates a different approach. The xpath element selects the first element that matches
the XPath expression named in the expr attribute. Here, the position attribute tells the processor
where to put the contents of the xpath element.

Important note
If you want to create an XPath expression based on a CSS class, Odoo provides a special function
called hasclass. For example, if you want to select a <div> element with the test_class
CSS class, then the expression will be expr="//div[hasclass('test_class')]".

Step 3 shows how you can change the position of an element. This option was introduced in version
12, and it is rarely used. In our example, we moved the phone field so that it came after the email
field using the position=move option.

XPath might look somewhat scary, but it is a very efficient means of selecting the node you need to
work on. Take the time to look through some simple expressions; it’s worth it. You’ll likely stumble
upon the term context node, to which some expressions are relative. In Odoo’s view inheritance
system, this is always the root element of the view you’re inheriting from.

For all the other elements found in the arch field of an inheriting view, the processor looks for the
first element with the same node name and matching attributes (with the attribute position excluded,
as this is part of the instruction). Use this only in cases where it is very unlikely that this combination
is not unique, such as a group element combined with a name attribute.

Changing existing views – view inheritance 239

Order of evaluation in view inheritance

As we currently have only one parent view and one inheriting view, we don’t run into any problems
with conflicting view overrides. When you have installed a couple of modules, you’ll find a lot of
overrides for the partner form. This is fine as long as they change different things in a view, but there
are occasions where it is important to understand how overriding works in order to avoid conflicts.

The direct descendants of a view are evaluated in ascending order of their priority field, so views
with a lower priority are applied first. Every step of inheritance is applied to the result of the first, so
if a view with priority 3 changes a field and another one with priority 5 removes it, this is fine. This
does not work, however, if the priorities are reversed.

You can also inherit an inheriting view itself from a view. In this case, the second-level inheriting view
is applied to the result of the view it inherits from. So, if you have four views, A, B, C, and D, where A
is a standalone form, B and C inherit from A, and D inherits from B, the order of evaluation is A, B,
D, and C. Use this to enforce an order without having to rely on priorities; this is safer in general. If
an inheriting view adds a field and you need to apply changes to this field, inherit from the inheriting
view and not from the standalone one.

Important note
This kind of inheritance always works on the complete XML tree from the original view, with
modifications from the previous inheriting views applied.

The following points provide information on some advanced tricks that are used to tweak the behavior
of view inheritance:

• For inheriting views, a very useful and not very well-known field is groups_id. This field
causes inheritance to take place only if the user requesting the parent view is a member of one
of the groups mentioned there. This can save you a lot of work when adapting the user interface
for different levels of access because, with inheritance, you can have more complex operations
than just showing or not showing the elements based on group membership, as is possible with
the groups attribute for form elements.

• You can, for example, remove elements if the user is a member of a group (which is the inverse
of what the groups attribute does). You can also carry out some elaborate tricks, such as
adding attributes based on group membership. Think about simple things, such as making a
field read-only for certain groups, or more interesting concepts, such as using different widgets
for different groups.

• What was described in this recipe relates to the mode field of the original view being set to
primary, while the inheriting views have the mode extension, which is the default. We will
investigate the case in which the mode of an inheriting view is set to primary later, where
the rules are slightly different.

Backend Views244

How it works...

When Odoo loads a form view, it first checks whether the relational type fields have embedded
views in the field, as outlined previously. Those embedded views can have the exact same elements as
the views we defined before. Only if Odoo doesn’t find an embedded view of some type does it use
the model’s default view of this type.

There’s more...

While embedded views might seem like a great feature, they complicate view inheritance a lot. For
example, as soon as embedded views are involved, the field names are not guaranteed to be unique,
and you’ll usually have to use some elaborate XPaths to select elements within an embedded view.

So, in general, you should better define standalone views and use the form_view_ref and tree_
view_ref keys, as described earlier in the Having an action open a specific view recipe of this chapter.

Displaying attachments on the side of the form view
In some applications, such as invoicing, you need to fill in data based on a document. To ease the
data-filling process, a new feature was added to Odoo version 12 to display the document on the side
of the form view.

In this recipe, we will learn how to display the form view and the document side by side:

Figure 9.3 – Cascading attachments and the form view

Defining kanban views 249

How it works...

We need to give a list of fields to load in step 2 in order to be able to access them later. The content of
the templates element must be a single t element with the t-name attribute set to kanban-box.

What you write inside this element will be repeated for each record, with special semantics for t
elements and t-* attributes. For details about this, refer to the Using client-side QWeb templates recipe
from Chapter 15, Web Client Development because, technically speaking, kanban views are just an
application of QWeb templates.

There are a few modifications that are particular to kanban views. You have access to the read_only_
mode, record, and widget variables during evaluation. Fields can be accessed using record.
fieldname, which is an object with the value and raw_value properties, where value is the
field’s value that has been formatted in a way that is presentable to the user, and raw_value is the
field’s value, as it comes from the database.

Important note
many2many fields make an exception here. You’ll only get an ID list through the record
variable. For a user-readable representation, you must use the field element.

Note the type attribute of the link at the top of the template. This attribute makes Odoo generate a
link that opens the record in view mode (open) or edit mode (edit), or it deletes the record (delete).
The type attribute can also be object or action, which will render the links that call a function
from the model or an action. In both cases, you need to supplement the attributes for buttons in form
views, as outlined in the Adding buttons to forms recipe of this chapter. Instead of the a element, you
can also use the button element; the type attribute has the same semantics here.

There’s more...

There are a few more helper functions worth mentioning. If you need to generate a pseudo-random
color for an element, use the kanban_color(some_variable) function, which will return a
CSS class that sets the background and color properties. This is usually used in the t-att-
class elements.

If you want to display an image stored in a binary field, use kanban_image(modelname,
fieldname, record.id.raw_value), which returns a data URI if you included the field
in your fields list; the field is set, is a placeholder if the field is not set, or is a URL that makes Odoo
stream the field’s contents if you didn’t include the field in your fields list. Do not include the field in
the fields list if you need to display a lot of records simultaneously or if you expect very big images.
Usually, you’d use this in a t-att-src attribute of an img element.

10
Security Access

Odoo is typically used by multi-user organizations. Each user has a distinct position in every organization,
and they have varying access based on their function. The HR manager, for example, does not have
access to the company’s accounting information. You may determine which information a user can
access in Odoo using access rights and record rules. We will learn how to set access rights rules and
record rules in this chapter.

Such compartmentalization of access and security requires that we provide access to roles based on
their permission levels. We will learn about this in this chapter.

In this chapter, we will cover the following recipes:

• Creating security groups and assigning them to users

• Adding security access to models

• Limiting access to fields in models

• Using record rules to restrict record access

• Activating features with security groups

• Accessing recordsets as a superuser

• Hiding view elements and menus based on groups

To concisely get the point across, the recipes in this chapter make small additions to an example
existing module.

Security Access264

Important information
When you add a new model, the admin user does not have access to that model. This implies
that the admin user cannot see the menus and views that have been added for that model. To
show it, you must first add access rules to that model, something we will accomplish in the
Adding security access to models recipe. Note that you may access newly added models as a
superuser; for more information, see the Accessing Odoo as a superuser recipe in Chapter 3,
Creating Odoo Add-On Modules.

How it works...

Add-on modules are organized into functional areas, or major applications, such as accounting and
finance, sales, or human resources. These are defined by the category key in the manifest file.

If a category name does not exist yet, it will be automatically created. For convenience, a base.
module_category_<category_name_in_manifest> XML ID will also be generated for
the new category name in lowercase letters, replacing the spaces with underscores. This is useful for
relating security groups to application categories.

In our example, we used the Hostel category name in the manifest, and it generated a base.
module_category_hostel XML identifier.

By convention, data files that contain security-related elements should be placed inside a
security subdirectory.

A manifest file must also be used to register security files. The sequence in which files are specified
in the module manifest’s data key is critical since you cannot utilize a reference to a security group
in other views or ACL files until the group has been created. It’s advisable to put the security data file
first, followed by the ACL files and other user interface data files.

In our example, we created groups with the <record> tag, which will create a record of the res.
groups model. The most important columns of the res.group model are as follows:

• name: This is the group’s display name.

• category_id: This is a reference to the application category and is used to organize the
groups in the user’s form.

• implied_ids: These are other groups to inherit permissions from.

• users: This is the list of users that belong to this group. In new add-on modules, we usually
want the admin user to belong to the application’s manager group.

The first security group uses implied_ids as the base.group_user group. This is the Employee
user group and is the basic security group all the backend users are expected to share.

Creating security groups and assigning them to users 265

The second security group sets a value on the users field to assign it to the administrator user, which
has the base.user_admin XML ID.

Users that belong to a security group will automatically belong to its implied groups. For example, if
you assign a Hostel Manager group to any user, that user will also be included in the User group. This
is because the Hostel Manager group has the User group in its implied_ids column.

Furthermore, security groups’ access rights are cumulative. A user has permission if any of the groups
to which they belong (directly or indirectly) grant it to them.

Some security groups are displayed as a selection box in the user form rather than distinct tick
boxes. This occurs when the groups involved are in the same application category and are linearly
interconnected by implied_ids. Group A, for example, implies Group B, while Group B implies
Group C. If a group is not associated with any other groups via implied_ids, a checkbox will
appear instead of a selection box.

Note
Note that the relationships that were defined in the preceding fields also have reverse relationships
that can be edited in the related models, such as security groups and users.

Setting values on reference fields, such as category_id and implied_ids, can be done using the
related records’ XML IDs and some special syntax. This syntax was explained in detail in Chapter 6,
Managing Module Data.

There’s more...

The special base.group_no_one security group called Extra Rights is also noteworthy. In previous
Odoo versions, it was used for advanced features hidden by default and was only made visible when
the Technical Features flag was activated. From version 9.0, this has changed, and the features
are visible so long as Developer Mode is active.

Security groups only provide cumulative access rights. There is no method to deny a group’s access.
This implies that a manually established group used to customize rights should inherit from the nearest
group with fewer permissions than intended (if any), and then add all remaining permissions required.

Groups also have these additional fields available:

• Menus (the menu_access field): These are the menu items the group has access to

• Views (the view_access field): These are the UI views the group has access to

• Access rights (the model_access field): This is the access it has to models, as detailed in
the Adding security access to models recipe

Security Access266

• Rules (the rule_groups field): These are the record-level access rules that apply to the
group, as detailed in the Limiting record access using record rules recipe

• Notes (the comment field): This is a description or commented piece of text for the group

With that, we’ve learned how to build security groups and assign them via the GUI. We will utilize
these groups to establish an access control list and record rules in the next few recipes.

See also

To learn how to access newly added models through the superuser, please refer to the Accessing Odoo
as a superuser recipe in Chapter 3, Creating Odoo Add-On Modules.

Adding security access to models
It’s common for add-on modules to add new models. For example, in Chapter 3, Creating Odoo Add-On
Modules, we added a new Hostel model. It is easy to miss out on creating security access for new models
during development, and you might find it hard to see menus and views that have been created. This
is because, from Odoo version 12, admin users don’t get default access rights to new models. To see
the views and menus for the new model, you need to add security ACLs.

However, models with no ACLs will trigger a warning log message upon loading, informing the user
about the missing ACL definitions:

WARNING The model hostel.hostel has no access rules, consider adding
one example, access_hostel_hostel, access_hostel_hostel, model_hostel_
hostel, base.group_user,1,0,0,0

You may also access freshly uploaded models as a superuser, which circumvents all security requirements.
For further information, see the Accessing Odoo as a superuser recipe in Chapter 3, Creating Odoo
Add-On Modules. Administrators have access to the superuser functionality. So, for new models to
be useable by non-admin users, we must establish their access control lists so that Odoo understands
how to access them and what activities each user group is permitted to conduct.

Getting ready

We will continue using the my_hostel module from the previous tutorial and add the missing
ACLs to it.

Security Access268

The columns in the CSV file are as follows:

• id: This is the internal XML ID identification for this rule. Any unique name inside the module
is acceptable, but the best practice is to use access_<model>_<group>.

• name: This is a title for the access rule. It is a common practice to use an access.
<model>.<group> name.

• model_id:id: This is the XML ID for the model. Odoo automatically assigns this kind of
ID to models with a model_<name> format, using the model’s _name with underscores
instead of dots. If the model was created in a different add-on module, a fully qualified XML
ID that includes the module name is needed.

• group_id:id: This is the XML ID for the user group. If left empty, it applies to all users. The
base module provides some basic groups, such as base.group_user for all employees and
base.group_system for the administration user. Other apps can add their own user groups.

• perm_read: Members of the preceding group can read the model’s records. It accepts two
values: 0 or 1. Use 0 to restrict read access on the model and 1 to provide read access.

• perm_write: Members of the preceding group can update the model’s records. It accepts
two values: 0 or 1. Use 0 to restrict write access on the model and 1 to provide write access.

• perm_create: Members of the preceding group can add new records of this model. It accepts
two values: 0 or 1. Use 0 to restrict create access on the model and 1 to provide create access.

• perm_unlink: Members of the preceding group can delete records of this model. It accepts
two values: 0 or 1. Use 0 to restrict unlink access on the model and 1 to provide unlink access.

The CSV file we used adds read-only access to the Employees | Employee standard security group
and full write access to the Administration | Settings group.

The Employee user group, base.group_user, is particularly important because the user groups
that are added by the Odoo standard apps inherit from it. This means that if we need a new model to
be accessible by all the backend users, regardless of the specific apps they work with, we should add
that permission to the Employee group.

The Employee user group, base.group_user, is particularly essential since it is inherited by the
user groups introduced by the Odoo standard applications. This implies that if we want a new model
to be accessible to all backend users, independent of the applications they use, we need to add it to
the Employee group.

The resulting ACLs can be viewed from the GUI in debug mode by navigating to Settings | Technical
| Security | Access Controls List, as shown in the following screenshot:

Adding security access to models 269

Figure 10.2 – ACL list view

Some people find it easier to use this user interface to define ACLs and then use the Export feature
to produce a CSV file.

There’s more...

It seems reasonable to provide this access to the Hostel user and the Hostel Manager groups specified
in the Creating security groups and assigning them to users recipe. If you went through that lesson, it’s
a nice exercise to go through this one while changing the group identities to Hostel ones.

It is crucial to remember that access lists given by add-on modules should not be directly customized
because they will be reloaded on the next module update, erasing any modification done from the GUI.

There are two methods for customizing ACLs. One option is to build new security groups that inherit
from the modules and add extra rights to them, but this only enables us to add permissions and not
remove them. A more adaptable way would be to uncheck the Active checkbox on certain ACL lines
to disable them. Because the active field is not shown by default, we must alter the tree view so that
it includes the <field name="active" /> column. We may also create new ACL lines to add
or alter permissions. The deactivated ACLs will not be revived after a module update, and the newly
inserted ACL lines will not be impacted.

It’s also worth mentioning that ACLs only apply to conventional models and aren’t required for
abstract or transient models. If these are defined, they will be ignored, and a warning message will
be logged in the server log.

See also

You can also access newly added models through a superuser since this bypasses all security rules. To
learn more about this, please refer to the Accessing Odoo as a superuser recipe in Chapter 3, Creating
Odoo Add-On Modules.

Limiting access to fields in models 271

The groups value is a string that contains a comma-separated list of valid XML IDs for security
groups. The simplest way to find the XML ID for a particular group is to activate developer mode and
navigate to the group’s form, at Settings | Users | Groups, and then access the View Metadata option
from the debug menu, as shown in the following screenshot:

Figure 10.3 – Menu for viewing a group’s XML ID

You may also view a security group’s XML ID through code by utilizing the <record> tag that
formed the group. However, looking at the information, as shown in the preceding screenshot, is the
most simple approach to figuring out a group’s XML ID.

There’s more...

In some circumstances, we want a field to be available or unavailable based on specific requirements,
such as the values in a field, such as stage_id or state. Typically, this is handled at the view level
by utilizing characteristics such as states or attributes to dynamically display or hide the field based
on particular criteria. For a more complete explanation, see Chapter 9, Backend Views.

Note that these techniques work at the user interface level only and don’t provide actual access security.
To do this, you should add checks to the business logic layer. Either add model methods decorated with
@constrains, implementing the specific validations intended, or extend the create, write, or
unlink methods to add validation logic. You can get further insights into how to do this by going
back to Chapter 5, Basic Server-Side Development.

See also

Please see Chapter 9, Backend Views, for further information on how to hide and reveal a field
using criteria.

For further insights into the business logic layer, please refer to Chapter 5, Basic Server-Side Development.

Limiting record access using record rules 273

Figure 10.4 – Record rule for the hostel user

Upgrading the add-on module will load the record rules inside the Odoo instance. If you are using
demo data, you can test it through the default demo user to give hostel user rights to the demo user.
If you are not using demo data, you can create a new user with hostel user rights.

How it works...

Record rules are just data records that are placed in the ir.rule core model. While the file containing
them can be located anywhere in the module, the security subfolder is the preferred location. A
single XML file including both security groups and record rules is usual.

In contrast to groups, record rules in standard modules are imported into an odoo section with
the noupdate="1" property. Because certain records will not be reloaded after a module update,
manually customizing them is safe and will survive further upgrades.

To be consistent with the standard modules, our record rules should also be contained within an
<odoo noupdate="1"> section.

Record rules can be seen from the GUI via the Settings| Technical | Security | Record Rules menu
option, as shown in the following screenshot:

Security Access274

Figure 10.5 – ACLs for the Hostel model

The following are the most important record rule fields that were used in this example:

• Name (name): A descriptive title for the rule.

• Object (model_id): A reference to the model to which the rule applies.

• Groups (groups): The security groups affected by the rule. If no security group is mentioned,
the rule is deemed global and is enforced differently (keep reading to understand more about
these groups).

• Domain (domain): A domain expression that is used to filter the records. The rule is only
going to apply to these filtered records.

The first record rule we created was for the Hostel User security group. It uses the [('is_
public', '=', True)] domain expression to select only the hostel that is available publicly.
Thus, users with the Hostel User security group will only be able to see public hostels.

Note
The domain expressions used in the record rules are executed on the server using ORM objects.
As a result, dot notation may be used on the fields on the left (the first tuple member). The
[('country_id.code', '=', 'IN')] domain expression, for example, will only
return entries containing the country of India.

Since record rules are mostly based on the current user, you can use the user recordset on the right-
hand side (the third tuple element) of the domain. So, if you want to show the records for the company
of the current user, you can use the [('conpany_id', '=', user.company_id.id)]
domain. Alternatively, if you want to show the records that are created by the current user, you can
use the [('user_id', '=', user.id)] domain.

We want the Hostel Manager security group to have access to all hostels, regardless of whether
they are public or private. Because it is a descendant of the Hostel User group, it will be able to
see only public hostels until we intervene.

Activating features with security groups 275

The non-global record rules are joined using the OR logical operator; each rule adds access and never
removes this access. For the Hostel Manager security group to have access to all the hostels, we
must add a record rule to it so that it can add access for all hostels, as follows:

[('is_public', 'in', [True, False])]

We chose to do this differently here and use the [(1, '=', 1)] special rule instead to unconditionally
give access to all hostel records. While this may seem redundant, remember that if we don’t do this,
the Hostel User rule can be customized in a way that will keep some hostel out of reach from the
Settings user. The domain is special because the first element of a domain tuple must be a field name;
this exact case is one of two cases where that is not true. The special domain of [(1, '=', 0)] is
never true, but also not very useful in the case of record rules. This is because this type of rule is used
to restrict access to all the records. The same thing is also possible with access lists.

Important information
Record rules are ignored if you’ve activated SUPERUSER mode. When testing your record
rules, ensure that you use another user for that.

There’s more...

When a record rule is not assigned to a security group, it is labeled as global and treated differently
from the other rules.

Global record rules have a greater impact than group-level record rules and establish access limits
that cannot be overridden. They are connected technically via an AND operator. They are used in
standard modules to create multi-company security access so that each user may only see data from
their own business.

In summary, standard non-global record rules are combined with an OR operator, and a record is
accessible if any of the rules grant that access. When using an AND operator, global record rules add
limits to the access provided by conventional record rules. Regular record rules cannot override
restrictions imposed by global record rules.

Activating features with security groups
Some functions can be restricted by security groups so that they can only be accessible to people who
belong to these groups. Security groups can inherit other groups, granting them permissions as well.

These two features are utilized to provide a feature toggling functionality in Odoo. Security groups
may also be used to activate or disable functionality for certain users or the whole Odoo instance.

Activating features with security groups 279

Figure 10.6 – Hostel config in General Settings

As shown in the preceding screenshot, you will have new settings in the Hostel section. The first
option, Manage hostel start date, will enable the start date feature for the hostel record. The second
option, Install Notes app, will install Odoo’s Notes app.

How it works...

The core base module provides the res.config.settings model, which provides the business
logic behind the activation option. The base_setup add-on module uses the res.config.
settings model to provide several basic configuration options that can be made available inside a
new database. It also makes the Settings | General Settings menu available.

The base_setup module adapts res.config.settings to a central management dashboard,
so we need to extend it to add configuration settings.

If we decide to create a specific settings form for the Hostel app, we can still inherit from the res.
config.settings model with a different _name and then, for the new model, provide the menu
option and form view for just those settings. We already saw this method in the Adding your own
settings options recipe of Chapter 8, Advanced Server-Side Development Techniques.

We activated these functionalities in two ways: by activating a security group and making the functionality
visible to the user, and by installing an add-on module that offers this feature. The fundamental res.
config.settings model provides the logic necessary to handle both of these scenarios.

The first step in this tutorial adds the base_setup add-on module to the dependencies since it
provides extensions to the res.config.settings model we want to use. It also adds an additional
XML data file that we will need to add the new options to the General Settings form.

Security Access280

In the second step, we created a new security group, Hostel: start date feature. The feature that needs
to be activated should only be visible to that group, so it will be hidden until the group is enabled.

In our example, we want the hostel start date to only be available when the corresponding configuration
option is enabled. To achieve this, we can use the groups attribute on the field so that it is made
available only for this security group. We did this at the model level so that it is automatically applied
to all the UI views where the field is used.

Finally, we extended the res.config.settings model to add the new options. Each option is
a Boolean field, and its name must begin either with group_ or module_, according to what we
want it to do.

The group_ option field should have an implied_group attribute and should be a string that
contains a comma-separated list of XML IDs for the security groups to activate when it is enabled.
The XML IDs must be complete, with the module name, dot, and identifier name provided; for
example, module_name.identifier.

We can also provide a group attribute to specify which security groups the feature will be enabled
for. It will be enabled for all the Employee-based groups if no groups are defined. Thus, the related
groups won’t apply to portal security groups, since these don’t inherit from the Employee base security
group like the other regular security groups do.

The mechanism behind the activation is quite simple: it adds the security group in the group attribute
to implied_group, thus making the related feature visible to the corresponding users.

The module_ option field does not require any additional attributes. The remaining part of the
field name identifies the module to be installed when this option has been activated. In our example,
module_note will install the Note module.

Important information
Unchecking the box will uninstall the module without warning, which can cause data loss
(models or fields and module data will be removed as a consequence). To avoid unchecking
the box by accident, the secure_uninstall community module (from https://
github.com/OCA/server-tools) prompts the user for a password before they uninstall
the add-on module.

There’s more...

Configuration settings can also have fields named with the default_ prefix. When one of these has
a value, the ORM will set it as a global default. The settings field should have a default_model
attribute to identify the model that’s been affected, and the field name after the default_ prefix
identifies the model field that will have the default value set.

Security Access284

In Step 2, we added the groups="my_hostel.group_hostel_manager" attribute to
menuitem. This means that this menu is only visible to hostel users.

You can use the groups attribute almost everywhere, including <field>, <notebook>, <group>,
and <menuitems>, or on any tag from the view architecture. Odoo will hide those elements if the
user doesn’t have that group. You can use the same group attributes in web pages and QWeb reports,
which will be covered in Chapter 12, Automation, Workflows, Emails, and Printing, and Chapter 14,
CMS Website Development.

As we saw in the Accessing recordsets as a superuser recipe of this chapter, we can hide fields from some
users using the groups argument in the Python field definition. Note that there is a big difference
between using security groups on fields and using Python security groups in views. Security groups
in Python provide real security; unauthorized users can’t even access the fields through ORM or RPC
calls. However, the groups in view are just for improving usability. Fields that are hidden through
groups in the XML file can still be accessed through RPC or ORM.

See also

Please refer to Chapter 4, Application Models, to learn how to add model views and menus.

11
Internationalization

Odoo supports a variety of languages and enables users to use the language(s) with which they are most
comfortable. The Odoo i18n features that are already built-in help with this. With string translations,
Odoo also supports date and time formatting.

In this chapter, you will discover how to upload translation files to your modules and enable various
languages. Due to the diversity of countries and the prevalence of local languages, users often find
it easier to connect with a system when it’s presented in their native tongue. To accommodate this,
Odoo offers a feature that enables software text to be translated into the user’s preferred language.
This functionality enhances the user experience by ensuring that the interface is accessible and
comprehensible to individuals, regardless of their linguistic background, thereby promoting wider
adoption and usability of the software across various regions and demographics. Utilizing these new
functionalities will enhance the Odoo user experience.

The following recipes will be covered in this chapter:

• Setting up a language installation and user preference settings

• Setting up options relating to language

• Text translation using a web client user interface

• Exporting translation into a file

• Using gettext tools to make translations easier

• Importing translation files into Odoo

• Altering a website’s custom language URL code

Many of these recipes can be completed either from the web client user interface or from the command
line. Wherever possible, we will see how to use both of these options. Odoo uses Transifex(Odoo)
and Weblate (OCA) translation platforms.

Internationalization286

Setting up a language installation and user preference
settings
Odoo can be localized to accommodate various languages and locale settings, including date and
number formats.

The only language that is initially installed is the standard English language. We need to install various
localities and languages so that people may utilize them. This recipe describes how user preferences
are implemented, as well as how they may be established.

How to do it…

Activate developer mode and follow these steps to install a new language in an Odoo instance:

1. Go to Settings | General Settings | Language. Here, you will see the Add Language link, as
shown in the following screenshot. Click on that link; a dialogue box will open where you can
load languages:

Figure 11.1 – Language options in the general settings

2. Select the language you want to load:

Figure 11.2 – Dialogue to load a language

Setting up a language installation and user preference settings 287

3. Clicking on Add will load the selected language, and the confirmation dialogue box will open,
as follows:

Figure 11.3 – Dialogue that shows a language has been loaded

4. New languages can also be installed from the command line. The equivalent command for the
preceding steps is as follows:

$./odoo-bin -d mydb --load-language=es_ES

5. To set the language that’s used by a user, go to Settings | Users & Companies | Users, and, in
the Preferences tab of the User form, set the Language field value:

Figure 11.4 – User’s form to set the language

Internationalization288

Through the Preferences menu item, users may easily change these variables on their own. They may
access this by clicking on their username in the top-right corner of the web client window:

Figure 11.5– Preferences option to set the language

How it works...

Users can have their own language and time zone preferences. The language settings are used to translate
user interface text into the chosen language and apply local conventions for float and monetary fields.

Before a language is made available for the user to select, it must be installed with the Add language
option. The list of available languages can be seen by going to the Settings | Translations | Languages
menu option in developer mode. The ones with the active flag set are installed.

Each Odoo add-on module is responsible for providing translation resources, which should be placed
inside an i18n subdirectory. Each language’s data should be in a .po file. In our example, for the
Spanish language, the translation data is loaded from the es_ES.po data file.

Odoo also supports the notion of a base language. For example, if we have an es.po file for Spanish and
an es_MX.po file for Mexican Spanish, then es.po is detected as the base language for es_MX.po.
When the Mexican Spanish language is installed, both data files are loaded; first the one for the base
language and then the specific language. Therefore, in our case, the Mexican Spanish translation file
simply has to contain the strings that are unique to the language variety.

The i18n subdirectory is also expected to have a <module_name>.pot file, providing a template
for translations and containing all the translatable strings. The Exporting translation strings to a file
recipe of this chapter explains how to export the translatable strings to generate this file.

In previous versions of Odoo, when an additional language is installed, the corresponding resources
are loaded from all installed add-on modules and stored in the Translated Terms model. Its data can

Setting up options relating to language 289

be viewed (and edited) within the Settings | Translations | Application Terms | Translated Terms
menu option (note that this menu is only visible in developer mode).

From Odoo version 17 onwards, you won’t be able to find this menu as translated terms are now stored
as native terms. Any field that is translatable now stores JSON data representing all translations of all
translated language values. For example, translations of product names are now stored directly in the
name field. The process of translations has not changed – you just can’t see the Settings | Translations
| Application Terms | Translated Terms menu item with all translated terms shown in a list.

Translation files for the installed languages are also loaded when a new add-on module is installed or
an existing add-on module is upgraded.

There’s more...

By selecting the refresh symbol again next to the languages, translation files may be refreshed without
you having to upgrade the add-on modules. You can do this if your translation files have been changed
and you don’t want to deal with updating the modules (and all of their dependencies).

If the Overwrite Existing Terms checkbox is left empty, only the newly translated strings are loaded.
Thus, the changed translated strings won’t be loaded. Check the box if you want the already-existing
translations to also be loaded and overwrite the currently loaded translations. Note that this can
potentially be problematic if someone changes the translations manually through the interface.

The Overwrite Existing Terms checkbox exists because we can edit specific translations by going
to the Settings | Translations | Application Terms | Translated Terms menu item, or by using the
Technical Translation shortcut option in the Debug menu. Translations that are added or modified
in this way won’t be overwritten unless the language is reloaded with the Overwrite Existing Terms
checkbox enabled.

It can be useful to know that add-on modules can also have an i18n_extra subdirectory with
extra translations. First, the .po files in the i18n subdirectory are downloaded. Then, Odoo ORM
downloads files for the base language and, after that, for the language variant. Following this, the .po
files in the i18n_extra subdirectory are downloaded, first for the base language and then for the
language variant. The final string translation that is loaded is the one that ultimately takes precedence.

Setting up options relating to language
The locale settings should be the right ones, so long as the user is using the correct language, because
they come with suitable defaults.

You may still want to change a language’s settings, though. For instance, you could opt to use the user
interface’s default English language setting while changing the American date and number formats
to better suit your needs.

Internationalization290

Additionally, locale settings such as date and number formats are provided by languages and their
variants (such as es_MX for Mexican Spanish).

Getting ready

We will require developer mode to be turned on. If it hasn’t previously been enabled, do it in the
manner described in Chapter 1, Installing the Odoo Development Environment, in the Activating the
Odoo developer tools recipe, where you installed the Odoo development environment.

How to do it...

Follow these steps to change a language’s locale settings:

1. Select the Settings | Translations | Languages menu option to view the installed languages
and their options. A form with the necessary options will open when you click on one of the
installed languages:

Figure 11.6 – Form to configure language settings

2. Edit the language settings. To change the date to the ISO format, change Date Format to
%Y-%m-%d. To change the number format to use a comma as a decimal separator, modify the
Decimal Separator and Thousands Separator fields accordingly.

Text translation using a web client user interface 291

How it works...

The user language is selected in the user preferences and placed in the lang context key when logging
in and initiating a new Odoo user session. By translating the source texts into the user language
and formatting the dates and numbers as per the language’s current locale settings, the output is
prepared accordingly.

There’s more...

Server-side processes can modify the context in which actions are run. For example, to get a record
where the dates are formatted according to the American English format, independent of the current
user’s language preference, you can do the following:

en_records = self.with_context(lang='en_US').search([])

For more details, refer to the Calling a method with a modified context recipe in Chapter 8, Advanced
Server-Side Development Techniques.

Text translation using a web client user interface
The simplest way to translate is to use the translation feature provided by the web client. These translation
strings are stored in the database and can later be exported to a .po file, either to be included in an
add-on module or just to be imported back manually.

Text fields can have translatable content, meaning that their value will depend on the current user’s
language. We will also see how to set the language-dependent values on these fields.

Getting ready

We will need to have developer mode activated. If it’s not, activate it, as shown in the Activating the
Odoo developer tools recipe in Chapter 1, Installing the Odoo Development Environment.

How to do it...

We will demonstrate how to translate terms through the web client using the User Groups feature
as an example:

1. Navigate to the screen you want to translate. As an example, we will open the Groups view via
the Settings | Users & Companies | Groups menu item:

Internationalization292

Figure 11.7 – Translation for groups

2. Open one of the group records in the form view, and click on Edit:

Figure 11.8 – Translation for the field values

3. Note that the Name field has a special icon on the far right. This indicates that it is a translatable
field. Clicking on this icon opens a Translate list with the different installed languages. This
allows us to set the translation for each of those languages:

Exporting translation strings to a file 293

Figure 11.9 – Translation for the field values

How it works…

All translated terms are saved in the name field of any mode/table. In our example, Access Rights
belongs to the res_groups table; when you check the information stored in the name field, it will
be saved as a dictionary, where the key is the language code and the value is the translated phrases:

Figure 11.10 – Translation for the field values

Exporting translation strings to a file
Translation strings can be exported with or without the translated texts for a selected language. This
can either be to include i18n data in a module or to later perform translations with a text editor or
perhaps with a specialized tool.

We will demonstrate how to do this using our custom My Hostel module, so feel free to replace
My Hostel with your own module.

Getting ready

We will need to have developer mode activated. If it’s not already activated, activate it, as demonstrated in
the Activating the Odoo developer tools recipe in Chapter 1, Installing the Odoo Development Environment.

Internationalization294

How to do it…

To export the translation terms for the my_hostel module, follow these steps:

1. In the web client user interface, from the Settings top menu, select the Translations | Import/
Export | Export Translation menu option.

2. In the Export Translations dialogue box, choose the language translation to export, the file
format, and the modules to export. To export a translation template file, select New Language
(Empty translation template) from the Language selection list. It’s recommended to use
the .po format and to export only one add-on module at a time – the My Hostel module
(my_hostel is the technical name for the Discuss app), in our example:

Figure 11.11 – Dialogue to export translation terms

3. In Odoo version 17, you will find a new option in the export settings called Export Type, which
contains two options: Module and Model.

4. setting Module Type to Model will provide the new option to select a specific model with a
filter option, using which the user can export only specific filter-based records:

Internationalization296

How it works...

The Export Translation feature extracts the translatable strings from the target modules and
then creates a file with the translation terms. This can be done both from the web client and the
command-line interface.

When exporting from the web client, we can choose to either export an empty translation template
– that is, a file with the strings to translate, along with empty translations – or export a language,
resulting in a file with the strings to translate, along with the translation for the selected language.

The available file formats are CSV, PO, and TGZ. The TGZ file format exports a compressed file that
contains a <name>/i18n/ directory structure with the PO or POT file.

The CSV format can be useful for performing translations using a spreadsheet, but the format to use
in the add-on modules is PO files. These are expected to be placed inside the i18n subdirectory. They
are then automatically loaded once the corresponding language is installed. When exporting these
PO files, we should export only one module at a time. The PO file is also a popular format supported
by translation tools, such as Poedit.

Translations can also be exported directly from the command line by using the --i18n-export
option. This recipe shows how to extract both the template files and the translated language files.

In Step 4 of this recipe, we exported a template file. The --i18n-export option expects the path and
the filename to export. Bear in mind that the file extension is required to be either CSV, PO, or TGZ.
This option requires the -d option, which specifies the database to use. The --modules option is
also needed to indicate the add-on modules to export. Note that the --stop-after-init option
is not needed since the export command automatically returns to the command line when finished.

This exports a template file. The Odoo module expects this exported template in the i18n folder with
the .pot extension. When working on a module, after the export operation, we usually want to move
the exported PO file to the module’s i18n directory with a <module>.pot name.

In Step 5, the –language option was also used. With it, instead of an empty translation file, the
translated terms for the selected language were also exported. One use case for this is to perform some
translations through the web client user interface using the Technical Translation feature, and then
export and include them in the module.

There’s more…

Text strings in view and model definitions are automatically extracted for translation. For models,
the _description attribute, the field names (the string attribute), help text, and selection field
options are extracted, as well as the user texts for model constraints (_constraints and _sql_
constraints).

Text strings to translate inside Python or JavaScript code can’t be automatically detected, so the code
should identify those strings, wrapping them inside the underscore function.

Using gettext tools to make translations easier 297

In Python’s module file, we should ensure that the file is imported with the following:

from odoo import _

This file can then be used wherever a translatable text is used with something like this:

_('Hello World')

For strings that use additional context information, we should use Python string interpolation, as
shown here:

_('Hello %s') % 'World'

Note that the interpolation should go outside the translation function. For example, _("Hello %s"
% 'World') is wrong. String interpolations should also be preferred to string concatenation so that
each interface text is just one translation string.

Be careful with the Selection fields! If you pass an explicit list of values to the field definition, the
displayed strings are automatically flagged for translation. On the other hand, if you pass a method
that returns the list of values, the display strings must be explicitly marked for translation.

Regarding manual translation work, any text file editor will do so, but using an editor that specifically
supports the PO file syntax makes this work easier by reducing the risk of formatting errors. Such
editors include those listed here:

• POEDIT: https://poedit.net/

• Emacs (PO-mode): https://www.gnu.org/software/gettext/manual/
html_node/PO-Mode.html

• Lokalize: https://l10n.kde.org/tools/

• Gtranslator: https://wiki.gnome.org/Apps/Gtranslator

Using gettext tools to make translations easier
The PO file format is part of the gettext i18n and localization system that’s commonly used in
Unix-like systems. This system includes tools to ease translation work.

This recipe demonstrates how to use these tools to help translate our add-on modules. We want to use
it on a custom module, so the my_hostel module we created in Chapter 3, Creating Odoo Add-On
Modules, is a good candidate. However, feel free to replace it with some other custom module you
have at hand, replacing the tutorials’ my_hostel references as appropriate.

Importing translation files into Odoo 299

use the --translated option to filter out the untranslated entries and the --no-fuzzy option
to remove fuzzy translations. We then save the result in odoo_es.po.

Step 2 calls odoo.py with the --i18n-export option. You need to specify a database on the
command line, even if one is specified in the configuration file and the --modules option, with a
comma-separated list of modules to export the translation.

In the gettext world, fuzzy translations are those created automatically by the msgmerge
command (or other tools) using a proximity match on the source string. We want to avoid these in
the compendium.

Step 3 creates a new translation file by using existing translated values found in the compendium.
The msgmerge command is used with the --compendium option to find the msgid lines in the
compendium files, matching those in the translation template file generated in Step 2. The result is
saved in the es_ES.po file.

If you have a preexisting .po file for your add-on with translations that you would like to preserve,
you should rename it and replace the /dev/null argument with this file. The renaming procedure
is required to avoid using the same file for input and output.

There’s more...

This tutorial only skims the surface of the rich tools that are available with the GNU gettext
toolbox. Full coverage is well beyond the scope of this book. If you are interested, the GNU gettext
documentation contains a wealth of precious information about PO file manipulation and is available
at http://www.gnu.org/software/gettext/manual/gettext.html.

Importing translation files into Odoo
The standard method for loading translations is to store PO files in the module’s i18n subfolder. The
translation files are loaded and additional translated strings are added whenever the add-on module
is installed or updated.

However, there may be cases where we want to directly import a translation file. In this recipe, we will
learn how to load a translation file, either from the web client or from the command line.

Getting ready

We need to have developer mode activated. If it’s not activated already, activate it, as demonstrated
in the Activating the Odoo developer tools recipe in Chapter 1, Installing the Odoo Development
Environment. We will also need a translation po file, which we are going import in this tutorial – for
example, the myfile.po file.

Altering a website’s custom language URL code 301

For example, our hostel table has a room_number model. Its field translation of “Room Number”
will be stored at the database level as {"en_US": "Room Number", "fr_BE": "Numéro
de chambre"}.

The web client feature asks for the language name, but this is not used in the import process. It also
has an overwrite option. If selected, it forces all the translation strings to be imported, even the ones
that already exist, overwriting them in the process.

On the command line, the import can be done using the --i18n-import option. It must be
provided with the path to the file, relative to an add-on’s path directory; -d and --language (or
-l) are mandatory. Overwriting can also be achieved by adding the --i18n-overwrite option
to the command. Note that we didn’t use the --stop-after-init option here. It isn’t needed
since the import action stops the server when it finishes.

Altering a website’s custom language URL code
Odoo also supports multiple languages for websites. On a website, the current language is identified
as a language string. In this recipe, you will learn how to change the language code in a URL.

Getting ready

Before following this recipe, make sure you have installed the website module and enabled multiple
languages for the website.

How to do it...

To modify a language’s URL code, follow these steps:

1. Open the language list from the Settings | Translations | Languages menu option. Clicking
on one of the installed languages will open a form that looks like this:

Figure 11.14 – Language URL code for a website

Internationalization302

2. Here, you will see the URL Code field. Set the value that you want. Make sure you don’t add
spaces or special characters here.

After configuring this, you can test the results on your website. Open the home page and change the
language; you will see the custom language code in the URL.

How it works...

Odoo identifies the languages for a website via the URL path. For example, www.odoo.com/fr_FR
is used for the French language and www.odoo.com/es_ES is used for the Spanish language. Here,
the fr_FR and es_ES parts of the URL are the language ISO codes, and they are used by Odoo to
detect the requested language. But sometimes, you want to set the language in a more user-friendly
way. In that case, you can update the URL Code field. Once you have changed that, the Odoo website
will use the URL Code value to identify the language. For example, you could set URL Code to fr
for the French language. In this case, www.odoo.com/fr_FR would be converted into www.
odoo.com/fr.

Note
Changing the URL code in production is not a problem; Odoo will automatically redirect the
URL containing the language ISO code to your custom URL.

12
Automation, Workflows,

Emails, and Printing

Business applications are expected not only to store records but also to manage business workflows.
Some objects, such as leads or project tasks, have a lot of records that run in parallel. Having too
many records for an object makes it harder to have a clear picture of the business. Odoo has several
techniques that can deal with this problem. In this chapter, we will look at how we can set a business
workflow with dynamic stages and Kanban groups. This will help the user understand how their
business is running.

We will also look at techniques, such as server actions and automated actions, that can be used by
power users or functional consultants to add simpler process automation without the need to create
custom add-ons. Finally, we will create QWeb-based PDF reports and print them out.

In this chapter, we will cover the following recipes:

• Managing dynamic record stages

• Managing Kanban stages

• Adding a quick create form to a Kanban card

• Creating interactive Kanban cards

• Adding a progress bar to Kanban views

• Creating server actions

• Using Python code server actions

• Using automated actions on time conditions

• Using automated actions on event conditions

• Creating QWeb-based PDF reports

Managing Kanban stages 307

The fold field is also used in Kanban views to display folded Kanban columns. Usually, Reserved
items are expected to be in the Unfolded stage, and terminated items that are marked as either Done
or Cancelled should be in the Folded stage.

By default, fold is the name of the field that is used to hold the value of the stage fold. You can change
this by adding the _fold_name = 'is_fold' class attribute.

In Step 2, we added the basic access rights rules for the new model.

In Step 3, we added the stage_id many2one field to the hostel.room model. While creating
a new room record, we wanted to set the default stage value to Draft. To accomplish this, we added
a _default_room_stage() method. This method will fetch the record of the hostel.room.
stage model with the lowest sequence number, so, while creating a new record, the stage with the
lowest sequence will be displayed as active in the form view.

In Step 4, we added the stage_id field to the form view. By adding the clickable option, we
made the status bar clickable. We also added an option for the fold field, which will allow us to
display insignificant stages in the drop-down menu.

In Step 5, we added stage_id to the tree view.

In Step 6, we added the default data for the stages. Users will see these basic stages after installing our
module. If you want to learn more about XML data syntax, refer to the Loading data using XML files
recipe in Chapter 6, Managing Module Data.

Important note
With this implementation, the user can define new stages on the fly. You will need to add
views and menus for hostel.room.stage so that you can add new stages from the user
interface. Refer to Chapter 9, Backend Views, if you don’t know how to add views and menus.

If you don’t want to do this, the Kanban view provides inbuilt features for adding, removing,
or modifying stages from the Kanban view itself. We’ll look at this in the next recipe.

See also

• Refer to Chapter 9, Backend Views, to learn about adding views and menus.

Managing Kanban stages
Using a Kanban board is a simple way to manage workflows. It is organized into columns, each
corresponding to stages, and the work items progress from left to right until they are finished. A Kanban
view, with these stages, provides flexibility because it allows users to choose their own workflows. It
provides a full overview of the records on a single screen.

Automation, Workflows, Emails, and Printing310

In Step 3, we added the group_expand attribute to the stage_id field. We also added a new
_group_expand_stages() method. group_expand changes the behavior of the field
grouping. By default, field grouping shows the stages that are being used. For example, if no rooms
record has the Reserved stage, the grouping will not return that stage, so Kanban will not display
the Reserved column. But in our case, we want to display all of the stages, regardless of whether
or not they are being used.

The _group_expand_stages() function is used to return all the records for the stages. Because
of this, the Kanban view will display all the stages and you will be able to use workflows by dragging
and dropping them.

There’s more...

If you play around with the Kanban board you created in this recipe, you will find lots of different
features. Some of these are as follows:

• You can create a new stage by clicking on the Add new column option. The group_create
option can be used to disable the Add column option from the Kanban board.

• You can arrange columns in a different order by dragging them by their headers. This will
update the sequence field of the hostel.room.stage model.

• You can edit or delete columns with the gear icon in the header of a Kanban column. The
group_edit and group_delete options can be used to disable this feature.

• The stages that have a true value in the fold field will collapse and the column will be
displayed as a slim bar. If you click on this slim bar, it will expand and display the Kanban cards.

• If the model has an active Boolean field, it will display the option to archive and unarchive
records in the Kanban column. The archivable option can be used to disable this feature.

• The plus icon on the Kanban column can be used to create records directly from the Kanban
view. The quick_create option can be used to disable this feature. For the moment, this
feature will not work in our example. This will be solved in the next recipe.

See also

• To learn more about Kanban, please refer to Chapter 9, Backend Views.

Adding a quick create form to a Kanban card
Grouped Kanban views provide the quick create feature, which allows us to generate records directly
from the Kanban view. The plus icon on a column will display an editable Kanban card on the column,
using which you can create a record. In this recipe, we will learn how to design a quick create Kanban
form of our choice.

Automation, Workflows, Emails, and Printing312

Figure 12.3 – Quickly creating a record directly from the Kanban view

When you click on the Create button in the Kanban view, you will see a small card with input instead
of being redirected to the form view. You can fill in the values and click on Add, which will create a
room record.

How it works...

To create a custom quick create option, we need to create a minimal form view. We did this in Step 1.
We added two required fields because you cannot create a record without filling in the required fields.
If you do so, Odoo will generate an error and open the default form view in the dialogue so that you
can enter all the required values.

In Step 2, we added this new form view to the Kanban view. Using the quick_create_view
option, you can map the custom form view to the Kanban view. We also added one extra option –
on_create="quick_create". This option will display a quick create form in the first column
when you click on the Create button in the control panel. Without this option, the Create button will
open a form view in edit mode.

You can disable the quick create feature by adding quick_create="false" to the Kanban tag.

Automation, Workflows, Emails, and Printing316

Figure 12.4 – Kanban cards with new options

Our changes in the Kanban structure will enable extra options in the Kanban card. Now, you will
be able to choose the color on the Kanban itself. You will also be able to prioritize cards with stars.

How it works...

In Steps 1 and 2, we added a new model and security rules for tags. In Step 3, we added a few fields
to the rooms model.

In Step 4, we added those fields to the form view. Note that we used the priority widget on the
popularity field, which displays the selection field with star icons. In the hostel_amenities_
ids field, we used the many2many_tags widget, which displays the many2many field in the form
of tags. The color_field option is passed to enable the color feature on tags. The value of this
option is the field name where the color index is stored. The no_create_edit option will disable
the feature of creating new tags via the form view.

In Step 5, we improved lots of things. Fisrt, we added t-attf-class="#{kanban_color(record.
color.raw_value)} to the Kanban card. This will be used to display the color of the Kanban
card. It uses the value of the color field and generates a class based on that value. For example, if a
Kanban record has a value of 2 in the color field, it will add kanban_color_2 to the class. After
that, we added a drop-down menu to add options such as Edit, Delete, and the Kanban color picker.
The Edit and Delete options are only displayed if the user has proper access rights.

Automation, Workflows, Emails, and Printing318

Restart the server and update the module to apply the changes. Then, click on the plus icon on a column.
This will display the progress bar on the Kanban columns, as shown in the following screenshot:

Figure 12.6 – Kanban view with a progress bar

Upon updating the module, you will have added a progress bar to the Kanban columns. The color of
the progress bar shows the number of records based on the record state. You will be able to click on
one of the progress bars to filter records based on that state.

How it works...

Progress bars on Kanban columns are displayed based on the values of the field. Progress bars support
four colors, so you cannot display more than four states. The available colors are green (success), blue
(information), red (danger), and yellow (warning). Then, you need to map colors to the field states.
In our example, we mapped three states of the priority field because we didn’t want any progress
bars for the rooms that were not in demand.

By default, progress bars show a count of the records on the side. You can see the total of a particular
state by clicking on it in the progress bar. Clicking on the progress bar will also highlight the cards
for that state. Instead of the count of records, you can also display the sum of the integer or float
field. To do this, you need to add the sum_field attribute with the field value, such as sum_
field="field_name".

Creating server actions
Server actions underpin Odoo’s automation tools. They allow us to describe the actions to perform.
These actions are then available to be called by event triggers or to be triggered automatically when
certain time conditions are met.

The simplest case is to let the end user perform an action on a document by selecting it from the More
button. We will create this kind of action for project tasks so that we can Set Priority by starring the
currently selected task and setting a deadline on it for 3 days from now.

Creating server actions 319

Getting ready

We will need an Odoo instance with the Project app installed. We will also need Developer Mode
activated. If it’s not already activated, activate it in the Odoo Settings dashboard.

How to do it...

To create a server action and use it from the More menu, follow these steps:

1. From the Settings top menu, select the Technical | Actions | Server Actions menu item and
click on the Create Contextual Action button at the top of the record list, as shown in the
following screenshot:

Figure 12.7 – Server action form view

2. Fill out the server action form with these values:

 � Action Name: Set as Priority

 � Model: Task

 � Type: Update Record

3. In the server action, under the Data to Write tab, go to the Update section. Enter the
following parameters:

 � Field: Priority

 � Evaluation Type: Value

 � Value: Low

Automation, Workflows, Emails, and Printing320

The following screenshot shows the entered values:

Figure 12.8 – Set lines to write

1. Save the server action and click on the Create Contextual Action button at the top left to make
it available under the project task’s More button.

2. To try it out, go to the Projects top menu, open the Project, and open a random task. By clicking
on the action, we should see the Set Priority option, as shown in the following screenshot.
Selecting this will star the task and change the deadline date to 3 days from now:

Creating server actions 321

Figure 12.9 – The Set Priority server action

Once you add the server action, you will have set the priority option on the task. Upon clicking on it,
the server action star will turn yellow, meaning the priority of the task has increased. Also, the server
action will change the deadline.

How it works...

Server actions work on a model, so one of the first things we must do is pick the model we want to
work with. In our example, we used project tasks.

Next, we should select the type of action to perform. There are a few options available:

• Update Record allows you to set values on the current record or another record.

• Create activity allows you to create activity on the selected records

• Execute Code allows you to write arbitrary code to execute when none of the other options
are flexible enough for what we need.

• Create Record allows you to create a new record on the current model or another model.

• Send Email allows you to choose an email template. This will be used to send out an email
when the action is triggered.

• Execute Existing actions can be used to trigger a client or window action, just like when a
menu item is clicked on.

• Add Followers allows users or channels to subscribe to the record.

• Create Next Activity allows you to create a new activity. This will be displayed in the chatter.

• Send SMS allows you to send an SMS. You need to select the SMS template.

Automation, Workflows, Emails, and Printing322

Note
Send SMS Text Message is a chargeable service from Odoo. You need to purchase credit for
SMS if you want to send an SMS.

For our example, we used Update the Record to set some values on the current record. We set Priority
to 1 to star the task and set a value on the Deadline field. This one is more interesting because the
value to use is evaluated from a Python expression. Our example makes use of the datetime Python
module (https://docs.python.org/2/library/datetime.html) to compute the date
3 days from today.

Arbitrary Python expressions can be used there, as well as in several of the other action types available.
For security reasons, the code is checked by the safe_eval function implemented in the odoo/
tools/safe_eval.py file. This means that some Python operations may not be allowed, but
this rarely proves to be a problem.

When you add a drop-down option to the server action, usually, it is available for all internal users.
But if you just want to show this option to selected users, you can assign a group to the server action.
This is available under the Security tab in the server action form view.

There’s more...

The Python code is evaluated in a restricted context, where the following objects are available to use:

• env: This is a reference for the Environment object, just like self.env in a class method.

• model: This is a reference to the model class that the server action acts upon. In our example,
it is equivalent to self.env['project.task].

• ValidationError: This is a reference to from odoo.exceptions import
ValidationError, allowing validations that block unintended actions. It can be used as
raise Warning('Message!').

• Record or records: This provides references to the current record or records, allowing you
to access their field values and methods.

• log: This is a function that’s used to log messages in the ir.logging model, allowing
database-side logging-on actions.

• datetime, dateutil, and time: These provide access to the Python libraries.

Automation, Workflows, Emails, and Printing324

The following screenshot shows the entered values:

Figure 12.10 – Python code with the values entered

4. Save the server action and click on Create Contextual Action at the top left to make it available
under the project task’s More button.

5. Now, click on the Project top menu and select the Search | Tasks menu item. Pick a random
task, set a deadline date on it, and then try the Send Reminder option under the More button.

This works just like the previous recipe; the only difference is that this server action will run your
Python code. Once you run the server action on a task, it will put a message in the chatter.

How it works...

The Creating server actions recipe of this chapter provides a detailed explanation of how to create a
server action in general. For this particular type of action, we need to pick the Execute Code option
and then write the code to run the text area.

The code can have multiple lines, as is the case in our recipe, and it runs in a context that has references
to objects such as the current record object or the session user. The available references were described
in the Creating server actions recipe.

The code we used computes the number of days from the current date until the deadline date and
uses that to prepare an appropriate notification message. The last line does the actual posting of the
message in the task’s message wall. The subtype='mt_comment' argument is needed for email
notifications to be sent to the followers, just like when we use the New Message button. If no subtype

Using automated actions on time conditions 325

is given, mt_note is used by default, posting an internal note without notification, as if we had used
the Log an internal note button. Refer to Chapter 23, Managing Emails in Odoo, to learn more about
mailing in Odoo.

There’s more...

Python code server actions are a powerful and flexible resource, but they do have some limitations
compared to the custom add-on modules.

Because the Python code is evaluated at runtime, if an error occurs, the stack trace is not as informative
and can be harder to debug. It is also not possible to insert a breakpoint in the code of a server action
using the techniques shown in Chapter 7, Debugging Modules, so debugging needs to be done using
logging statements. Another concern is that, when trying to track down the cause of behavior in the
module code, you may not find anything relevant. In this case, it’s probably caused by a server action.

When carrying out a more intensive use of server actions, the interactions can be quite complex, so
it is advisable to plan properly and keep them organized.

See also

• Refer to Chapter 23, Managing Emails in Odoo, to learn more about mailing in Odoo.

Using automated actions on time conditions
Automated actions can be used to automatically trigger actions based on time conditions. We can use
them to automatically perform some operations on records that meet certain criteria and time conditions.

As an example, we can trigger a reminder notification for project tasks one day before their deadline,
if they have one. Let’s see how this can be done.

Getting ready

To follow this recipe, we will need to have both the project management app (which has the technical
name project) and the Automated Action Rules add-on (which has the technical name base_
automation) already installed, and have Developer Mode activated. We will also need the server
action we created in the Using Python code server actions recipe of this chapter.

How to do it...

To create an automated action with a timed condition on tasks, follow these steps:

1. In the Settings menu, select the Technical | Automation | Automated Actions menu item,
and click on the Create button.

Automation, Workflows, Emails, and Printing326

2. Fill out the basic information on the Automated Actions form:

 � Rule Name: Send notification near deadline

 � Model: Task

 � Select Based on Time Condition in the Trigger field

 � For Action To Do, select Execute Existing actions

3. To set the record criteria, click on the Edit Domain button in the Apply on section. In
the pop-up dialogue, set a valid domain expression in the code editor, ["&",["date_
deadline","!=",False],["stage_id.fold","=",False]], and click on the
Save button. When changing to another field, the information on the number of records meeting
the criteria will be updated and display Record(s) buttons. By clicking on the Records button,
we can check the records list of the records meeting the domain expression.

4. To set the time condition for Trigger Date, select the field to use, which is Deadline, and set
Delay after trigger date to -1 Days.

5. On the Actions tab, under Server actions to run, click on Add an item and pick Send Reminder
from the list; this should have been created previously. Refer to the following screenshot:

Figure 12.11 – Automated action form view

If not, we can still create the server action to run using the Create button.

6. Click on Save to save the automated action.

Using automated actions on time conditions 327

7. Perform the following steps to try it out:

i. Go to the Project menu, go to Search | Tasks, and set a deadline on a task with the date
in the past.

ii. Go to the Settings menu, click on the Technical | Automation | Scheduled Actions
menu item, find the Base Action Rule: check and execute action in the list, open its
form view, and press on the Run Manually button at the top left. This forces timed
automated actions to be checked. This is shown in the following screenshot. Note that
this should work on a newly created demo database, but it might not work this way in
an existing database:

Figure 12.12 – Running an automated action (for test)

8. Again, go to the Project menu and open the same task you previously set a deadline date
on. Check the message board; you should see the notification generated by the server action
triggered by our automated action.

After adding the time-based automated action for the deadline, a reminder message will be
added to the task 1 day before the deadline.

How it works...

Automated actions act on a model, and can be triggered either by events or time conditions. First, we
must set the Model and When to Run values.

Automation, Workflows, Emails, and Printing328

Both methods can use a filter to narrow down the records that we can perform the action on. We can
use a domain expression for this. You can find further information about writing domain expressions
in Chapter 9, Backend Views. Alternatively, you can create and save a filter on project tasks by using
the user interface features and then copy the automatically generated domain expression, selecting it
from the Set selection based on a search filter list.

The domain expression we used selects all the records with a non-empty Deadline date, in a stage where
the Fold flag is not checked. Stages without the Fold flag are considered to be work-in-progress.
This way, we avoid triggering notifications on tasks that are in the Done, Canceled, or Closed stages.

Then, we should define the time condition – the date field to use and when the action should be
triggered. The period can be in minutes, hours, days, or months, and the number set for the period
can be positive, indicating the time after the date, or negative, indicating the time before the date.
When using a period in days, we can provide a resource calendar that defines the working days and
that can be used by the day count.

These actions are checked by the Check Action Rules scheduled job. Note that, by default, this is
run every 4 hours. This is appropriate for actions that work on a day or month scale, but if you need
actions that work on smaller timescales, you need to change the running interval to a smaller value.

Actions will be triggered for records that meet all the criteria and whose triggering date condition
(the field date plus the interval) is after the last action execution. This is to avoid repeatedly triggering
the same action. Also, this is why manually running the preceding action will work in a database in
which the scheduled action has not yet been triggered, but why it might not work immediately in a
database where it has already been run by the scheduler.

Once an automated action is triggered, the Actions tab tells you what should happen. This might be
a list of server actions that do things such as changing values on the record, posting notifications, or
sending out emails.

There’s more...

These types of automated actions are triggered once a certain time condition is reached. This is not
the same as regularly repeating an action while a condition is still true. For example, an automated
action will not be capable of posting a reminder for every day after the deadline has been exceeded.

This type of action can, instead, be performed by scheduled actions, which are stored in the ir.cron
model. However, scheduled actions do not support server actions; they can only call an existing
method of a model object. So, to implement a custom action, we need to write an add-on module,
adding the underlying Python method.

For reference, the technical name for the model is base.action.rule.

Using automated actions on event conditions 329

See also

• For further details about writing domain expressions, refer to Chapter 9, Backend Views.

Using automated actions on event conditions
Business applications provide systems with records for business operations but are also expected to
support dynamic business rules that are specific to the organization’s use cases.

Carving these rules into custom add-on modules can be inflexible and out of the reach of functional
users. Automated actions triggered by event conditions can bridge this gap and provide a powerful
tool to automate or enforce the organization’s procedures. As an example, we will enforce validation
on project tasks so that only the project manager can change tasks to the Done stage.

Getting ready

To follow this recipe, you will need to have the project management app already installed. You also need
to have Developer Mode activated. If it’s not activated already, activate it in the Odoo About dialogue.

How to do it...

To create an automated action with an event condition on tasks, follow these steps:

1. In the Settings menu, select the Technical | Automation |Automated Actions menu item,
and click on the Create button.

2. Fill out the basic information in the Automated Actions form:

 � Action Name: Validate Closing Tasks

 � Model: Task

 � Trigger: On Save

 � Action To Do: Execute Existing actions

 � Watched fields: Stage id

3. The When updating rules allow you to set two record filters, before and after the update operation:

 � For the Before Update Filter field, click on the Edit Domain button, set a valid domain
expression – [('stage_id.name', '!=', 'Done')] – in the code editor, and save

 � For the Apply on field, click on the Edit Domain button, set the [('stage_id.name',
'=', 'Done')] domain in the code editor, and save, as shown in the following screenshot:

Using automated actions on event conditions 331

The following screenshot shows the entered values:

Figure 12.14 – Adding a child action

6. Click on Save & Close to save the automated action and try it out:

i. On a database with demo data and where you’re logged in as an administrator, go to the
Project menu and click on the project to open the Kanban view of the tasks.

ii. Then, try dragging one of the tasks into the Done stage column. Since this project’s
manager is the Demo user and we are working with the Administrator user, our
automated action should be triggered, and our warning message should block the change.

How it works...

We start by giving a name to our automated actions and setting the model it should work with. For the
type of action we require, we should choose On Save, but the On Creation, On Creation & Update,
On Deletion, and Based On Form Modification options are also available.

Next, we define the filters to determine when our action should be triggered. The On Save actions
allow us to define two filters – one to check before and the other after the changes are made to the
record. This can be used to express transitions – to detect when a record changes from state A to state
B. In our example, we want to trigger the action when a not-done task changes to the done stage. The
On Save action is the only one that allows these two filters; the other action types only allow one filter.

Automation, Workflows, Emails, and Printing332

Important note
It is important to note that our example condition will only work correctly for English language
users. This is because Stage Name is a translatable field that can have different values for different
languages. So, the filters on the translatable fields should be avoided or used with care.

Finally, we create and add one (or more) server actions with whatever we want to be done when
the automated action is triggered. In this case, we chose to demonstrate how to implement custom
validation, making use of a Python code server action that used the Warning exception to block
the user’s changes.

There’s more...

In Chapter 5, Basic Server-Side Development, we saw how to redefine the write() methods of a
model to perform actions on record updates. Automated actions on record updates provide another
way to achieve this, with some benefits and drawbacks.

Among the benefits, it is easy to define an action that’s triggered by the update of a stored computed
field, which is tricky to do in pure code. It is also possible to define filters on records and have different
rules for different records or for records matching different conditions that can be expressed with
search domains.

However, automated actions can have disadvantages compared to Python business logic code inside
modules. With poor planning, the flexibility provided can lead to complex interactions that are difficult
to maintain and debug. Also, the before-and-after write filter operations bring some overhead, which
can be an issue if you are performing sensitive actions.

Creating QWeb-based PDF reports
When communicating with the outside world, it is often necessary to produce a PDF document from
a record in the database. Odoo uses the same template language that’s used for form views: QWeb.

In this recipe, we will create a QWeb report to print information about a room that is currently being
borrowed by a student. This recipe will reuse the models presented in the Adding a progress bar in
Kanban views recipe from earlier in this chapter.

Getting ready

If you haven’t done so already, install wkhtmltopdf, as described in Chapter 1, Installing the Odoo
Development Environment; otherwise, you won’t get shiny PDFs as a result of your efforts.

Also, double-check that the web.base.url configuration parameter (or report.url) is a URL
that is accessible from your Odoo instance; otherwise, the report will take a long time to generate
and the result will look strange.

Automation, Workflows, Emails, and Printing336

In Step 3, we declared the report in another XML file via the <record> tag. It will register the report’s
ir.actions.report model. The crucial part here is that you set the report_name field to
the complete XML ID (that is, modulename.record_id) of the template you defined; otherwise,
the report generation process will fail. The model field determines which type of record the report
operates, and the name field is the name shown to the user in the print menu.

Note
In previous versions of Odoo, a <report> tag was used to register a report. But from version
v14, it is deprecated and you need to create a record of ir.actions.report with the
<record> tag. The <report> tag is still supported in Odoo v14 for backward compatibility
but using it will show a warning in the log.

By setting report_type to qweb-pdf, we requested that the HTML generated by our view is run
through wkhtmltopdf to deliver a PDF to the user. In some cases, you may want to use qweb-
html to render the HTML within the browser.

There’s more...

There are some marker classes in a report’s HTML that are crucial for the layout. Ensure that you wrap
all your content in an element with the page class set. If you forget that, you’ll see nothing at all. To
add a header or footer to your record, use the header or footer class.

Also, remember that this is HTML, so make use of CSS attributes such as page-break-before,
page-break-after, and page-break-inside.

You’ll have noted that all of our template body is wrapped in two elements with the t-call attribute
set. We’ll examine the mechanics of this attribute later in Chapter 14, CMS Website Development, but
you must do the same in your reports. These elements ensure that the HTML generates links to all the
necessary CSS files and contains some other data that is needed for report generation. While web.
html_container doesn’t have an alternative, the second t-call can be web.external_
layout. The difference is that the external layout already comes with a header and footer displaying
the company logo, the company’s name, and some other information you expect from a company’s
external communication, while the internal layout just gives you a header with pagination, the print
date, and the company’s name. For the sake of consistency, always use one of the two.

Important note
Note that web.internal_layout, web.external_layout, web.external_
layout_header, and web.external_layout_footer (the last two are called by the
external layout) are just views by themselves, and you already know how to change them via
inheritance. To inherit with the template element, use the inherit_id attribute.

Enabling the archive option for records 341

In our example, we used the action of rooms orders, which means that when the user clicks on the
stat button, they will be redirected to the rooms records but it will show all the rooms records. We
only want to show the rooms records for the current room. To do so, we have to pass search_
default_hostel_id. This will apply a default filter for the current room. Note that hostel_id
is the many2one field on the hostel.room model. If you want to filter by another field, use it by
prefixing it with search_default_ in context.

Stat buttons are used often as they are very useful and show the overall statistics related to a record.
You could use them to show all the information that relates to the current record. For example, on the
contact record, Odoo shows stat buttons that show information related to the current contact total of
the invoice, the number of leads, the number of orders, and so on.

See also

• To learn more about buttons, refer to the Adding buttons to forms recipe in Chapter 9, Backend Views.

• To learn more about actions, refer to the Adding a menu item and window action recipe in
Chapter 9, Backend Views.

Enabling the archive option for records
Odoo provides inbuilt features to enable archive and unarchive options for records. This will help
the user hide records that are no longer important. In this recipe, we will add an archive/unarchive
option for a room. We can archive a room once it is not available.

Getting started

For this recipe, we will be using the my_hostel module from the previous recipe.

How to do it...

Archive and unarchive mostly work automatically. The options are available on a record if the model
has a Boolean field named active. We already have an active field in the hostel.room model.
But if you have not added it, follow these steps to add the active field:

1. Add an active Boolean field to the hostel.room model, like this:

active = fields.Boolean(default=True)

2. Add an active field to the form view:

<field name="active" invisible="1"/>

Automation, Workflows, Emails, and Printing342

Update the my_hostel module to apply the changes. Now, you will be able to archive rooms. The
Archive option is available in the Action dropdown, as shown in the following screenshot:

Figure 12.18 – Archive option on the form view

Once you archive a record, you’ll want to see that record anywhere in Odoo. To see it, you need to
apply a filter from the search view.

How it works...

A Boolean field named active has a special purpose in Odoo. If you add an active field to your
model, records with a false value in the active field won’t be displayed anywhere in Odoo.

In Step 1, we added an active field to the hostel.room model. Note that we kept the default
value of True here. If we don’t add this default value, the new records will be created in archive mode
by default and won’t be displayed in views, even if we have recently created them.

In Step 2, we added the active field in the form view. If you don’t add an active field in the form
view, the archive/unarchive option won’t be displayed in the Action drop-down menu. If you don’t
want to show the field in the form view, you can use the invisible attribute to hide it from the
form view.

In our example, once you archive a room, that room will not be displayed in the tree view or any
other view. The room won’t even be displayed in the many2one dropdown in the hostel record. If
you want to unarchive that room, then you need to apply a filter to display archived records from the
search view, and then restore the room.

There’s more…

If your model has an active Boolean field, the search method will not return an archived record.
If you want to search all the records, whether they are archived or not, then pass active_test in
a context, like this:

self.env['hostel.room'].with_context(active_test=False).search([])

Note that if the archive record is linked to another record, it will be displayed in the related form view.
For example, say you have Room 1. Then, you archive Room 1, which means from now on, you cannot
select Room 1 in the room. But if you open Order 1, you will see the archived Room 1.

13
Web Server Development

We’ll introduce the basics of the web server part of Odoo in this chapter. Note that this will cover the
fundamental aspects; for high-level functionality, you should refer to Chapter 14, CMS Website Development.

The Odoo web server is a crucial component of the Odoo framework, responsible for handling web
requests and serving the web interface to users.

Here are key aspects of the Odoo web server:

• The web interface and modules: The web server provides a user-friendly web interface to
access and interact with Odoo applications. Users can navigate through different modules,
access data, and perform various business operations using this interface.

• An HTTP server: Odoo uses an HTTP server to handle web requests. It can be configured to
work with popular web servers such as Nginx or Apache or can run its own built-in HTTP server.

• Werkzeug: Werkzeug is a WSGI (Web Server Gateway Interface) library for Python, and Odoo
uses it to handle HTTP requests and responses. Werkzeug helps in routing requests, handling
sessions, and managing other web-related tasks.

• Controllers and routing: Odoo uses controllers to handle different web requests and routes
them to the appropriate controllers and methods. The routing mechanism ensures that requests
are directed to the correct modules and functionalities.

• Views and templates: Odoo uses views and templates to define how data should be presented
in the web interface. Views determine the structure of pages, and templates provide the HTML
and presentation logic to render data.

• Business logic: The web server is tightly integrated with the business logic of Odoo. It
communicates with the backend to fetch and update data, ensuring that the web interface
reflects the most current state of the business applications.

• Security: Security is a critical aspect of the Odoo web server. It includes features such as
authentication, authorization, and session management to ensure that users have appropriate
access levels and that their interactions with the system are secure.

Web Server Development344

• JavaScript and CSS: The Odoo web interface relies on JavaScript and CSS to enhance user
experience and provide dynamic and responsive features. This includes form validation,
interactive elements, and real-time updates.

• A RESTful API: The web server also provides a RESTful API, allowing external applications to
interact with Odoo programmatically. This enables integration with third-party systems and
the development of custom applications.

• Customization and extensions: Developers can extend and customize the Odoo web server to
meet specific business requirements. This includes creating custom modules, views, and controllers.

Understanding the Odoo web server is essential for developers and administrators working with Odoo
to deploy, configure, and customize the system based on the unique needs of a business.

Werkzeug (https://werkzeug.palletsprojects.com/en/2.3.x) is a WSGI library
for Python and is used by Odoo to handle HTTP requests and responses. WSGI is a specification for
how web servers and web applications communicate in Python. Werkzeug provides a set of utilities
and classes that make it easier to work with WSGI applications. Here are some details about how
Werkzeug is used in the context of Odoo:

• Request handling: Werkzeug provides a Request object that represents an incoming HTTP
request. In Odoo, this object is used to extract information from the incoming HTTP request,
such as form data, query parameters, and headers.

• Response generation: The Response object in Werkzeug is used to create HTTP responses.
Odoo utilizes this to construct and send responses back to the client, including rendering web
pages or providing data in response to AJAX requests.

• Routing: Werkzeug enables easy URL routing. In Odoo, the routing mechanism is used to
map incoming requests to the appropriate controller methods or views. This helps in directing
requests to the correct functionality within the Odoo application.

• Middleware: Middleware components can be added to the Odoo application using Werkzeug.
Middleware sits between the web server and the Odoo application and can perform tasks such
as authentication, logging, or modifying requests and responses.

• URL building: Werkzeug provides a URL building facility that helps to generate URLs for
different routes within the Odoo application. This is essential for creating links and redirects
dynamically in the web interface.

• Session management: Werkzeug supports session management, which Odoo utilizes to handle
user sessions. This is important for maintaining user state across multiple requests and ensuring
security features such as user authentication.

• Utilities for common tasks: Werkzeug includes various utilities that simplify common web
development tasks. Odoo leverages these utilities for tasks such as parsing form data, handling
file uploads, and managing cookies.

Technical requirements 345

• Error handling: Werkzeug provides mechanisms to handle errors, including HTTP error
responses. Odoo uses this to ensure that appropriate error messages are returned to the client
when needed.

To work with Werkzeug in the context of Odoo, developers often interact with these features
through the controllers and views defined in Odoo modules. Understanding Werkzeug is beneficial
for developers who want to extend or customize Odoo, as it provides insights into the underlying
mechanisms to handle HTTP requests and responses within the application. However, in day-to-day
Odoo development, developers often work at a higher level using the Odoo framework itself, without
directly interacting with Werkzeug.

In this chapter, we’ll cover the following topics:

• Making a path accessible from a network

• Restricting access to web-accessible paths

• Consuming parameters passed to your handlers

• Modifying an existing handler

• Serving static

Technical requirements
The technical requirements for this chapter include the online Odoo platform.

All the code used in this chapter can be downloaded from the GitHub repository at https://
github.com/PacktPublishing/Odoo-17-Development-Cookbook-Fifth-Edition/
tree/main/Chapter13.

Making a path accessible from a network

Making a path accessible from a network means defining the entry points or URLs through which users
can access the application. This is fundamental to any web development project, as it determines how
users will interact with the system. In this recipe, we’ll look at how to make a URL of the http://
yourserver/path1/path2 form accessible to users. This can be either a web page or a path
returning arbitrary data to be consumed by other programs. In the latter case, you would usually use
the JSON format to consume parameters and offer your data.

Getting ready

We’ll make use of the hostel.student model, which we looked at in Chapter 4, Application
Models; therefore, if you haven’t done so yet, grab the initial module from https://github.
com/PacktPublishing/Odoo-17-Development-Cookbook-Fifth-Edition/tree/
main/Chapter13/00_initial_module so that you will be able to follow the examples.

Web Server Development348

Figure 13.2 – A diagram of controllers

In general, paths handled by your add-on should start with your add-on’s name, to avoid name clashes.
Of course, if you extend some of the add-on’s functionality, you’ll use this add-on’s name.

odoo.http.route

The route decorator allows us to tell Odoo that a method should be web-accessible in the first place,
and the first parameter determines on which path it is accessible. Instead of a string, you can also pass
a list of strings, if you use the same function to serve multiple paths.

The type argument defaults to http and determines what type of request will be served. While,
strictly speaking, JSON is HTTP, declaring the second function as type='json' makes life a lot
easier because Odoo then handles type conversions for us.

Restricting access to web-accessible paths 353

Figure 13.3 – Mark as mine students – with login

The following screenshot shows the results without login:

Figure 13.4 – Mark as mine students – without login

The /my_hostel/all-students/mine path is not accessible at all for unauthenticated users. If
you try to access it without being authenticated, you’ll be redirected to the login screen in order to do so.

Figure 13.5 – Access via unauthenticated users

Web Server Development356

If this doesn’t exist, you’ll receive an error page.

Figure 13.7 – The student not found:Error page

How it works...

By default, Odoo (actually, werkzeug) intermingles the GET and POST parameters and passes
them as keyword arguments to your handler. So, by simply declaring your function as expecting a
parameter called student_id, you introduce this parameter as either GET (the parameter in the
URL) or POST (usually passed by the <form> element with your handler as the action attribute).
Given that we didn’t add a default value for this parameter, the runtime will raise an error if you try
to access this path without setting the parameter.

The second example makes use of the fact that, in a werkzeug environment, most paths are virtual
anyway. So, we can simply define our path as containing some input. In this case, we say that we
expect the ID of a hostel.student instance as the last component of the path. The name after
the colon is the name of a keyword argument. Our function will be called, with this parameter passed
as a keyword argument. Here, Odoo takes care of looking up this ID and delivering a browse record,
which, of course, only works if the user accessing this path has appropriate permissions. Given that
student is a browse record, we can simply recycle the first example’s function by passing student.
id as a student_id parameter, outputing the same content.

There’s more...

Defining parameters within a path is a functionality delivered by werkzeug, called converters.
The model converter is added by Odoo, which also defines the converter models that accept a comma-
separated list of IDs and pass a recordset containing those IDs to your handler.

The beauty of converters is that the runtime coerces parameters to the expected type, whereas you’re
on your own with normal keyword parameters. These are delivered as strings, and you have to take
care of the necessary type conversions yourself, as seen in the first example.

Built-in werkzeug converters include not only int, float, and string but also more intricate
ones, such as path, any, and uuid. You can look up their semantics at https://werkzeug.
palletsprojects.com/en/2.3.x/.

Modifying an existing handler 359

The following screenshot shows the customized page:

Figure 13.9 – The website info page (customized)

How it works…

In the first step, we overrode an existing QWeb template. In order to find out which one it is, you’ll
have to consult the code of the original handler. Usually, this will give you something similar to the
following line, which tells you that you need to override template.name:

return request.render('template.name', values)

In our case, the handler used a template called website_info, but this one was immediately
extended by another template called website.show_website_info, so it’s more convenient to
override this one. Here, we replaced the definition list showing installed apps with a table. For details
on how QWeb inheritance works, consult Chapter 15, Web Client Development.

In order to override the handler method, we must identify the class that defines the handler, which
is odoo.addons.website.controllers.main.Website in this case. We need to import
the class to be able to inherit from it. Now, we can override the method and change the data passed
to the response. Note that what the overridden handler returns here is a Response object and not
a string of HTML, as the previous recipes did, for the sake of brevity. This object contains a reference
to the template to be used and the values accessible to the template, but it is only evaluated at the
very end of the request.

In general, there are three ways to change an existing handler:

• If it uses a QWeb template, the simplest way to change it is to override the template. This is the
right choice for layout changes and small logic changes.

Web Server Development360

• QWeb templates get a context passed, which is available in the response as the qcontext
member. This is usually a dictionary where you can add or remove values to suit your needs.
In the preceding example, we filtered the list of apps to the website only.

• If the handler receives parameters, you can also preprocess those in order to make the overridden
handler behave in the way you want.

There’s more...

As seen in the preceding section, inheritance with controllers works slightly differently than model
inheritance; you actually need a reference to the base class and to use Python inheritance on it.

Don’t forget to decorate your new handler with the @http.route decorator; Odoo uses it as a
marker, for which methods are exposed to the network layer. If you omit the decorator, you actually
make the handler’s path inaccessible.

The @http.route decorator itself behaves similarly to field declarations – every value you don’t
set will be derived from the decorator of the function you’re overriding, so we don’t have to repeat
values we don’t want to change.

After receiving a response object from the function you override, you can do a lot more than just
change the QWeb context:

• You can add or remove HTTP headers by manipulating response.headers.

• If you want to render an entirely different template, you can overwrite response.template.

• To detect whether a response is based on QWeb in the first place, query response.is_qweb.

• The resulting HTML code is available by calling response.render().

See also

• Details on QWeb templates will be given in Chapter 15, Web Client Development.

Serving static resources
Web pages contain several types of static resources, such as images, videos, CSS, and so on. In this
recipe, we will see how you can manage such static resources for your module.

Getting ready

For this recipe, we will display an image on the page. Grab the my_hostel module from the previous
recipe. Select any image from your system and put that image inside the /my_hostel/static/
src/img directory.

Web Server Development362

How it works…

All the files placed under the /static folder are considered static resources and are publicly
accessible. In our example, we have put our image in the /static/src/img directory. You can
place the static resource anywhere under the static directory, but there is a recommended directory
structure based on the type of file:

• /static/src/img is the directory used for images

• /static/src/css is the directory used for CSS files

• /static/src/scss is the directory used for SCSS files

• /static/src/fonts is the directory used for font files

• /static/src/js is the directory used for JavaScript files

• /static/src/xml is the directory used for XML files for client-side QWeb templates

• /static/lib is the directory used for files of external libraries

In our example, we displayed an image on the page. You can also access the image directly from /
my_hostel/static/src/image/odoo.png.

In this recipe, we displayed a static resource (an image) on the web page, and we saw the recommended
directories for different static resources. There are more simple ways to present page content and static
resources, which we will see in the next chapter.

14
CMS Website Development

Odoo has a built-in feature called Website Builder, which is a powerful tool that allows you to create
and manage websites within the Odoo ERP ecosystem. It offers a user-friendly and visual approach
to web design, making it accessible to users without extensive technical knowledge.

Here are some key features and aspects of Odoo Website Builder:

• Drag-and-drop interface: Website Builder provides a drag-and-drop interface, allowing you to
easily add and arrange various content elements on your web pages. This includes text, images,
videos, forms, buttons, and more.

• Pre-designed templates: Odoo offers a selection of pre-designed website templates that you
can use as a starting point. These templates are customizable and can be adapted to your
brand’s identity.

• Responsive design: Websites created with Odoo are designed to be responsive, which means
they automatically adapt to different screen sizes and devices, ensuring a consistent user
experience on desktops, tablets, and smartphones.

• Content management: You can create and manage web pages, blogs, product listings, and
other types of content easily. Website Builder provides a content management system (CMS)
to organize and update your content.

• Search engine optimization (SEO): Odoo includes tools for SEO, allowing you to set metadata,
define SEO-friendly URLs, and manage sitemaps to improve your website’s visibility in
search engines.

• Multilingual support: Odoo supports multiple languages, making it suitable for businesses with
international audiences. You can translate content and adapt your website for different regions.

• Integration with other Odoo modules: One of the advantages of using Odoo Website Builder
is its seamless integration with other Odoo modules, such as CRM, sales, inventory, and more.
This means you can manage various aspects of your business within a unified system.

• Analytics and reporting: Odoo provides built-in analytics and reporting tools to track the
performance of your website, including visitor statistics, conversion rates, and more.

CMS Website Development364

• Custom development: For businesses with unique requirements, Odoo’s modular architecture
allows for custom development to extend the platform’s functionality.

In this chapter, you will explore the developments of the Odoo website’s custom features and learn
how to create web pages. You will also learn how to create building blocks that users can drag and
drop on a page. Advanced things such as Urchin Tracking Modules (UTMs), SEO, multi-websites,
GeoIP, and sitemaps are also covered in this chapter.

In this chapter, we will cover the following recipes:

• Managing assets

• Adding CSS and JavaScript for a website

• Creating or modifying templates

• Managing dynamic routes

• Offering static snippets to the user

• Offering dynamic snippets to the user

• Getting input from website users

• Managing SEO options

• Managing sitemaps for the website

• Getting a visitor’s country information

• Tracking a marketing campaign

• Managing multiple websites

• Redirecting old URLs

• Publish management for website-related records

Managing assets
In the context of Odoo’s website, assets refer to various types of resources, such as Cascading Style Sheets
(CSS), JavaScript files, fonts, and images, that are used to enhance the appearance and functionality
of your website. Managing assets in Odoo is important for maintaining a well-structured and efficient
website. When a page is loaded in the browser, these static files make a separate request to the server.
The higher the number of requests, the lower the website speed. To avoid this issue, most websites
serve static assets by combining multiple files. There are several tools on the market to manage these
sorts of things, but Odoo has its own implementation for managing static assets.

Managing assets 365

What are asset bundles and different assets in Odoo?

In Odoo, asset bundles are collections of different assets, such as CSS, JavaScript files, and other
resources, grouped together for efficient and organized loading on your website. Asset bundles help
manage the loading of these resources by allowing you to define which assets should be loaded together
to improve performance and ensure that your website functions properly. The job of an asset bundle
is to combine all the JavaScript and CSS in a single file and reduce its size by minimizing it.

Here are the different asset bundles used in Odoo:

• web._assets_primary_variables

• web._assets_secondary_variables

• web.assets_backend

• web.assets_frontend

• web.assets_frontend_minimal

• web.assets_frontend_lazy

• web.report_assets_common

• web.report_assets_pdf

• web.assets_web_dark

• web._assets_frontend_helpers

• web_editor.assets_wysiwyg

• website.assets_wysiwyg

• website.assets_editor

Important information
There are some other asset bundles used for specific applications;

for example, point_of_sale.assets, survey.survey_assets, mass_mailing.
layout, and website_slides.slide_embed_assets.

Odoo manages its static assets through the AssetBundle class, which is located at /odoo/addons/
base/models/assetsbundle.py.

Now, AssetBundle not only combines multiple files; it is also packed with more features. Here is
the list of features it provides:

• It combines multiple JavaScript and CSS files.

• It minifies the JavaScript and CSS files by removing comments, extra spaces, and carriage
returns from the file content. Removing this extra data will reduce the size of static assets and
improve the page loading speed.

Offering static snippets to the user 385

Figure 14.3 – Screenshot of static snippet

How it works…

A static snippet is nothing but a block of HTML code. In step 1, we created a QWeb template with
our HTML for the hostel block. In this HTML, we have just used a Bootstrap column structure, but
you can use any HTML code. Note that the HTML code you add in the snippet’s QWeb template will
be added to the page when you drag and drop. In general, it is a good idea to use section elements
and Bootstrap classes for snippets, because for them, Odoo’s editor offers edit, background, and resize
controls out of the box.

In step 2, we registered our snippet in the snippet list. You will need to inherit website.snippets
to register a snippet. In the website editor GUI, snippets are divided into different sections based on
their usage. In our example, we have registered our snippet in the Structure section via xpath. To
list your snippet, you need to use a <t> tag with the t-snippet attribute. The t-snippet attribute
will have the XML ID of the QWeb template, which is my_hostel.snippet_hostel_card in
our example. You will also need to use the t-thumbnail attribute, which is used to show a small
snippet image in the website editor.

CMS Website Development386

Note
The website.snippets template contains all the default snippets, and you can learn more
about it by exploring the /addons/website/views/snippets/snippets.xml file.

Odoo will add some default options to your snippets when you have a proper Bootstrap
structure. For example, in our snippet, you would be able to set a background color, a background
image, width, height, and so on. Explore the /addons/website/views/snippets/
snippets.xml file to see all the snippet options. In the next recipe, we will see how to add
our own options.

In step 3, we listed our snippet under the structure block. Once you update the module, you will
be able to drag and drop the snippet. In step 4, we just added an image for the snippet thumbnail.

There’s more…

In such cases, there will be no need for extra JavaScript. Odoo’s editor offers lots of options and controls
out of the box, and they are more than enough for static snippets. You will find all existing snippets
and options at website/views/snippets.xml.

Snippet options also support the data-exclude, data-drop-near, and data-drop-in
attributes, which determine where a snippet can be placed when dragging it out of the snippet bar.
These are also jQuery selectors, but in step 3 of this recipe, we didn’t use them, because we allow
putting the snippet basically anywhere that content can go.

Offering dynamic snippets to the user
Dynamic snippets refer to reusable components or blocks that are capable of displaying dynamic content
pulled from various sources such as databases, models, or external services. These snippets enable the
creation of versatile and adaptable web pages that display real-time or context-specific information.

Identify data sources:

• Determine the data sources you want to use in your dynamic snippet. This can include Odoo
models, databases, APIs, and so on.

• Implement dynamic placeholders using QWeb templating tags ({% %}) or Odoo-specific
directives (<t t-foreach="..." t-as="...">).

We will see how we can create dynamic snippets for Odoo. We will generate content based on
database values.

Managing multiple websites 403

By default, UTM tracking is blocked for salespeople. Consequently, to test the UTM feature,
you need to log in with a portal user.

2. Now, open the http://127.0.0.1:8069/books/submit_issues?utm_
campaign=sale URL.

3. Submit the book issue and check the book issue in the backend. This will display the campaign
in the book’s form view.

How it works...

In the first step, we inherited utm.mixin in the book.issue model. This will add the following
fields to the book.issue model:

• campaign_id: The Many2one field with the utm.campaign model. This is used to track
different campaigns, such as the Summer and Christmas Special campaigns.

• source_id: The Many2one field with the utm.source model. This is used to track
different sources, such as search engines and other domains.

• medium_id: The Many2one field with the utm.medium model. This is used to track
different media, such as postcards, emails, and banner ads.

To track the campaign, medium, and source, you need to share a URL in the marketing media like
this: your_url?utm_campaign=campaign_name&utm_medium=medium_name&utm_
source=source_name.

If a visitor visits your website from any marketing media, then the campaign_id, source_id,
and medium_id fields are automatically filled when records are created on the website page.

In our example, we just tracked campaign_id, but you can also add source_id and medium_id.

Important note
In our test example, we have used campaign_id=sale. Now, sale is the name of the
record in the utm.campaign model. By default, the utm module adds a few records of the
campaign, medium, and source. The sale record is one of them. If you want to create a new
campaign, medium, and source, you can do this by visiting the Link Tracker > UTMs
menu in developer mode.

Managing multiple websites
Odoo has built-in support for multiple websites. This means that the same Odoo instance can be run
on multiple domains as well as when displaying different records.

CMS Website Development406

Important note
Notice that there are records that do not have any website_id field set. Such records will be
displayed on all websites. This means that if you don’t have a website_id field on a particular
hostel, then that hostel will be displayed on all websites.

Then, we added the domain in the web search, as follows:

• In step 4, we restricted book access. If the book is not meant for the current website, then we
will raise a Not found error. The can_access_from_current_website() method
will return a True value if a hostel record is meant for the currently active website and False
if a hostel record is meant for another website.

• If you noticed, we added **post in both controllers. This is because, without it, **post /
hostels and /hostels/<model("hostel.hostel"):hostel> will not accept a
query parameter. They will also generate an error while switching the website from the website
switcher, so we added it. Normally, it is a good practice to add **post in every controller so
that they can handle query parameters.

Redirecting old URLs
When you move to the Odoo website from an existing system or website, you must redirect your old
URLs to new URLs. With proper redirection, all of your SEO rankings will be moved to new pages.
In this recipe, we will see how to redirect old URLs to new URLs in Odoo.

Getting ready

For this recipe, we will be using the my_hostels module from the previous recipe. For this recipe,
we are assuming that you used to have a website and have just moved to Odoo.

How to do it...

Imagine that, in your old website, books were listed at the /my-hostels URL; as you know, the
my_hostel module lists hostels on the /hostels URL as well. So, we will now add a redirection
rule in Odoo that will redirect your old /my-hostels URL to the new /hostels URL. Perform
the following steps to add the redirection rule:

1. Activate developer mode.

2. Open Website | Configuration | Redirects.

3. Click on New to add a new rule.

4. Enter values in the form, as shown in the following screenshot. In URL from, enter /my-hostels,
and in URL to, enter /hostels.

Redirecting old URLs 407

5. Select the Action value of 301 Moved permanently.

6. Save the record. Once you have filled in the data, your form will look like this:

 Figure 14.6 – Redirection rule

Once you have added this rule, open the /my-hostels page. You will notice that the page gets
redirected automatically to the /hostels page.

How it works...

Page redirection is simple; it’s just part of the HTTP protocol. In our example, we moved /my-hostels
to /hostels. We used a 301 Moved permanently redirect for redirection. Here are all the redirection
options that are available in Odoo:

• 404 Not Found: This option is used if you want to give a 404 Not Found response for a
page. Note that Odoo will display the default 404 page for such requests.

• 301 Moved permanently: This option redirects old URLs to new ones permanently. This type
of redirection will move SEO rankings to a new page.

• 302 Moved temporarily: This option redirects old URLs to new ones temporarily. Use this
option when you need to redirect a URL for a limited time. This type of redirection will not
move SEO rankings to a new page.

• 308 Redirect/Rewrite: An interesting option – with this, you will be able to change/rewrite
existing Odoo URLs to new ones.

In this recipe, this would allow us to rewrite the old /my-hostels URL to the new /hostels
URL. Hence, we would have no need to redirect the old URL by using the 301 Moved permanently
rule for /my-hostels.

15
Web Client Development

Odoo’s web client, or backend, is where employees spend most of their time.

In Chapter 9, Backend Views, you saw how to use the existing functionality that backends provide.
Here, we’ll take a look at how to extend and customize those functionalities.

The web module contains everything related to the user interface in Odoo.

All of the code in this chapter will depend on the web module. As you know, Odoo has two different
editions (Enterprise and Community).

The Community version uses the web module for user interfaces, while the Enterprise version uses
an extended version of the Community web module, which is the web_enterprise module.

The Enterprise version provides more features than the Community version, including mobile
compatibility, searchable menus, and material design. We’ll work on the Community version here.
Don’t worry—the modules developed in Community work perfectly in Enterprise because, internally,
web_enterprise depends on the Community web module and just adds some features to it.

Important information
Odoo 17 is a bit different for the backend web client compared to other Odoo versions. It
contains two different frameworks to maintain the GUI of the Odoo backend. The first one
is the widget-based legacy framework, and the second one is the component-based modern
framework called the Odoo Web Library (OWL). OWL is the new UI framework introduced
in Odoo v16. Both use QWeb templates for structure, but there are significant changes in the
syntax and the way those frameworks work.

Although Odoo 17 has a new framework OWL, Odoo does not use this new framework
everywhere. Most of the web client is still written with the old widget-based framework. In
this chapter, we will see how to customize the web client using a widget-based framework. In
the next chapter, we will look at the OWL framework.

Web Client Development412

In this chapter, you will learn how to create new field widgets to get input from users. We will also be
creating a new view from scratch. After reading this chapter, you will be able to create your own UI
elements in the Odoo backend.

Note
Odoo’s user interface heavily depends on JavaScript. Throughout this chapter, we will assume
you have a basic knowledge of JavaScript, jQuery, and SCSS.

In this chapter, we will cover the following recipes:

• Creating custom widgets

• Using client-side QWeb templates

• Making RPC calls to the server

• Creating a new view

• Debugging your client-side code

• Improving onboarding with tours

• Mobile app JavaScript

Technical requirements
The technical requirement for this chapter is the online Odoo platform.

All the code used in this chapter can be downloaded from the GitHub repository at https://
github.com/PacktPublishing/Odoo-17-Development-Cookbook-Fifth-Edition/
tree/main/Chapter15

Creating custom widgets
As you saw in Chapter 9, Backend Views, we can use widgets to display certain data in different formats.
For example, we used widget='image' to display a binary field as an image. To demonstrate how
to create your own widget, we’ll write one widget that lets the user choose an integer field, but we
will display it differently. Instead of an input box, we will display a color picker so that we can select
a color number. Here, each number will be mapped to its related color.

Getting ready

For this recipe, we will be using the my_hostel module with basic fields and views. You will find
the basic my_hostel module in the Chapter15/00_initial_module directory in the
GitHub repository.

Making RPC calls to the server 425

Figure 15.5 – Data Fetch Using RPC

How it works…

The onWillStart hook will be called just before the component is rendered for the first time. It
will be useful if we need to do some actions before the component is rendered to the view, such as
loading some initial data.

onWillUpdateProps is also an asynchronous hook that is called whenever an update is made
to a related component. The reactive nature of the OWL framework can be maintained using this
amazing hook.

When dealing with data access, we rely on the _rpc function provided by the ORM class, as we
explained earlier. This function allows you to call any public function on models such as search,
read, write, or, in this case, read_group.

In step 1, we made an RPC call and invoked the read_group method on the current model, which is
hostel.room in our case. We grouped data based on the category field so that the RPC call will
return book data that were grouped by category and add an aggregate in the category_count
key. We also mapped the category_count and category index in the categoryInfo so that
we could use it in the QWeb template.

Step 2 is nothing special. We just initialized the bootstrap tooltip.

In step 3, we used categoryInfo to set the attributes that are needed to display the category
information. In the loadCategInformation method, we assigned a color map via this.
categoryInfo so that you can access them in the QWeb template via widget.categoryInfo.
This is because we passed the widget reference; this is the renderToElement method.

Creating a new view 435

Figure 15.7 – Many2many group view

Important information
Odoo views are very easy to use and are very flexible. However, it is often the case that easy
and flexible things have complex implementations under the hood.

This is true of Odoo JavaScript views: they are easy to use, but complex to implement. They
consist of lots of components, including the model, renderer, controller, view, and QWeb
template. In the next section, we have added all of the required components for the views and
have also used a new view for the my_hostel model. If you don’t want to add everything
manually, grab a module from the example file in this book’s GitHub repository.

How it works…

In steps 1 and 2, we registered a new type of view, called m2m_group, in ir.ui.view
and ir.actions.act_window.view.

In step 3, we added the get_m2m_group_data method to the base. Adding this method to the base
will make that method available in every model. This method will be called via an RPC call from the
JavaScript view. The view will pass two parameters—the domain and m2m_field. In the domain
argument, the value of the domain will be the domain generated with a combination of the search

Web Client Development436

view domain and the action domain. m2m_field is the field name by which we want to group the
records. This field will be set on the view definition.

In the next few steps, we added the JavaScript files that are required to new the view. An Odoo JavaScript
view consists of the view, model, renderer, and controller. The word view has historical meaning in the
Odoo code base, so model, view, controller (MVC) becomes model, renderer, controller (MRC) in
Odoo. In general, the view sets up the model, renderer, and controller, and sets the MVC hierarchy
so that it looks similar to the following:

Figure 15.8 – View components

Its job is to get a set of fields, arch, context, and some other parameters, then to construct a
controller/renderer/model triplet:

• The view’s role is to properly set up each piece of the MVC pattern with the correct information.
Usually, it has to process the arch string and extract the data necessary for each other parts of
the view.

Note that the view is a class, not a widget. Once its job has been done, it can be discarded.

• The renderer has one job: representing the data being viewed in a DOM element. Each view can
render the data in a different way. Also, it should listen to appropriate user actions and notify
its parent (the controller) if necessary. The renderer is the V in the MVC pattern.

• The model: its job is to fetch and hold the state of the view. Usually, it represents in some way
a set of records in the database. The model is the owner of the business data. It is the M in the
MVC pattern.

• The controller: Its job is to coordinate the renderer and the model. Also, it is the main entry
point for the rest of the web client. For example, when the user changes something in the search
view, the update method of the controller will be called with the appropriate information.
It is the C in the MVC pattern.

Note
The JavaScript code for the views has been designed to be usable outside of the context of a
view manager/action manager. It could be used in a client action, or it could be displayed on
the public website (with some work on the assets).

Web Client Development438

All of this relies on your browser offering the appropriate functionality for debugging. While all
major browsers do that, we’ll only look at Chromium here, for demonstration purposes. To be able
to use the debug tools, open them by clicking on the top-right menu button and selecting More tools
| Developer tools:

Figure 15.9 – Opening Developer Tools in Chrome

Debugging your client-side code 439

How it works…

When the debugger is open, you should see something similar to the following screenshot:

Figure 15.10 – Opening Developer Tools in Chrome

Here, you have access to a lot of different tools in separate tabs. The currently active tab in the preceding
screenshot is the JavaScript debugger, and we have set a breakpoint in line 31 by clicking on the line
number. Every time our widget fetches the list of users, the execution should stop at this line, and the
debugger will allow you to inspect variables or change their values. Within the watch list to the right,
you can also call functions to try out their effects without having to continuously save your script file
and reload the page.

The debugger statements we described earlier will behave the same as soon as you have the developer
tools open. The execution will then stop, and the browser will switch to the Sources tab, with the file
in question opened and the line with the debugger statement highlighted.

Web Client Development442

Or you can click on debug icon and click on Start Tour.

Figure 15.11 – Tour step for user onboarding

It displays below the Tours popup.

Figure 15.12 – Tour step for user onboarding

Mobile app JavaScript 443

Click the start icon button to see the Ready to lunch your hostel? Tour content:

Figure 15.13 – Tour step for user onboarding

How it works…

The tour manager is available in the web_tour.tours category.

In the first step, we imported registry. We can then added a new tour with registry.
category("web_tour.tours"). We registered our tour with the hostel_tour name and
passed the URL on which this tour should run.

The next parameter is a list of these tour stops. A tour step requires three values. The trigger is used
to select the element on which the tour should be displayed. This is a JavaScript selector. We used the
XML ID of the menu because it is available in the DOM.

The first step, stepUtils.showAppsMenuItem(), is the predefined step from the tour for the
main menu. The next key is the content, and this is displayed when the user hovers over the tour drop.
We used the markup(_t()) function because we want to translate the string, while the position
key is used to decide on the position of the tour drop. Possible values are top, right, left, or bottom.

Important information
Tours improve the onboarding experience of the user and manage the integration tests. When
you run Odoo with test mode internally, it also runs the tours and causes the test case to fail
if a tour has not finished.

Mobile app JavaScript
Odoo v10 introduced the Odoo mobile application. It provides a few small utilities to perform mobile
actions, such as vibrating the phone, showing a toast message, and scanning QR codes.

Mobile app JavaScript 445

How it works…

@web_mobile/js/services/core provides the bridge between a mobile device and Odoo
JavaScript. It exposes a few basic mobile utilities. In our example, we used the showToast method
to display a toast in the mobile app. We also need to check the availability of the function. The reason
for this is that some mobile phones might not support a few features. For example, if devices don’t
have a camera, then you can’t use the scanBarcode() method. In such cases, to avoid tracebacks,
we need to wrap them with an if condition.

There’s more...

The mobile utilities that are to be found in Odoo are as follows:

• showToast(): To display a toast message

• vibrate(): To make a phone vibrate

• showSnackBar(): To display a snack bar with a button

• showNotification(): To display a mobile notification

• addContact(): To add a new contact to the phonebook

• scanBarcode(): To scan QR codes

• switchAccount(): To open the account switcher in Android

To learn more about mobile JavaScript, refer to https://www.odoo.com/documentation/16.0/
developer/reference/frontend/mobile.html.

16
The Odoo Web Library (OWL)

The Odoo V17 Javascript framework uses a custom component framework called OWL (short for
Odoo Web Library). It is a declarative component system loosely inspired by Vue and React. OWL is
a component-based UI framework and uses QWeb templates for structure. OWL is very fast compared
to Odoo’s legacy widget system and introduces tons of new features, including hooks, reactivity, the
auto instantiation of subcomponents, and more besides.

In this chapter, we will learn how to use an OWL component to generate interactive UI elements.
We will start with a minimal OWL component and then we will learn about the component’s life
cycle. Finally, we will create a new field widget for the form view. In this chapter, we will cover the
following recipes:

• Creating an OWL component

• Managing user actions in an OWL component

• Making OWL components with hooks

• Understanding the OWL component life cycle

• Adding an OWL field to the form view

Note
The following question may occur to you: why is Odoo not using some well-known JavaScript
frameworks, such as React.js or Vue.js? Please check out the following link for more
information: https://github.com/odoo/owl/blob/master/doc/miscellaneous/
comparison.md.

You can refer to https://github.com/odoo/owl to learn more about the OWL framework.

The Odoo Web Library (OWL)454

If you click on the arrow, the message text will be changed based on the list of messages in the constructor.

How it works...

In step 1, we updated the XML template of our component. Basically, we made two changes to the
template. We rendered the text message from the list of messages, and we selected the message based
on the value of currentIndex in the state variable. We added two arrow icons around the text
block. In the arrow icons, we added the t-on-click attribute to bind the click event to the arrow.

In step 2, we imported the useState hook from OWL. This hook is used to handle the state of
the component.

In step 3, we added a setup. This will be called when you create an instance of the object. In the
setup, we added a list of messages that we want to show, and then we added the state variable
using the useState hook. This will make the component reactive. When the state is changed,
the UI will be updated based on the new state. In our example, we used currentIndex in the
useState hook. This implies that whenever the value of currentIndex changes, the UI will be
updated as well.

Important information
There is only one rule for defining hooks, which is that the hooks will only work if you have
declared them in setup. Several other types of hooks are available, which you can find
here: https://github.com/odoo/owl/blob/master/doc/reference/hooks.md.

In step 4, we added methods to handle the click events of the arrow. Upon clicking the arrow, we are
changing the state of the component. As we are using a hook on the state, the UI of the component
will be automatically updated.

Understanding the OWL component life cycle
OWL components have several methods that help developers to create powerful and interactive
components. Some of the important methods of the OWL components are as follows:

• setup()

• onWillStart()

• onWillRender()

• onRendered()

• onMounted()

• onWillUpdateProps()

• onWillPatch()

Understanding the OWL component life cycle 459

rendered hooks are called just after rendering templates, parent first, then children. Note that at
this moment, the actual DOM may not exist yet (if it is the first rendering), or is not updated yet. This
will be done in the next animation frame, as soon as all the components are ready.

mounted

The mounted hook is called each time a component is attached to the DOM, after the initial rendering.
At this point, the component is considered active. This is a good place to add some listeners, or to
interact with the DOM, if the component needs to perform some measure for example.

It is the opposite of willUnmount. If a component has been mounted, it will always be unmounted
at some point in the future.

The mounted method will be called recursively on each of its children. First children, then parents.

It is allowed (but not encouraged) to modify the state in the mounted hook. Doing so will cause a
rerender, which will not be perceptible by the user, but will slightly slow down the component.

The onMounted hook is used to register a function that will be executed at this moment.

willUpdateProps

willUpdateProps is an asynchronous hook that is called just before new props are set. This is
useful if the component needs to perform an asynchronous task, depending on the props (for example,
assuming that the props are some record ID, fetching the record data).

The onWillUpdateProps hook is used to register a function that will be executed at this moment.

Notice that it receives the next props for the component.

This hook is not called during the first render (but willStart is called and performs a similar job).
Also, like most hooks, it is called in the usual order: parents first, then children.

willPatch

The willPatch hook is called just before the DOM patching process starts. It is not called on the initial
render. This is useful to read information from the DOM, such as the current position of the scrollbar.

Note that modifying the state is not allowed here. This method is called just before an actual DOM
patch, and is only intended to be used to save some local DOM state. Also, it will not be called if the
component is not in the DOM.

The onWillPatch hook is used to register a function that will be executed at this moment.
willPatch is called in the usual parent/children order.

The Odoo Web Library (OWL)460

patched

This hook is called whenever a component actually updates its DOM (most likely via a change in its
state/props or environment).

This method is not called on the initial render. It is useful to interact with the DOM (for example,
through an external library) whenever the component is patched. Note that this hook will not be
called if the component is not in the DOM.

The onPatched hook is used to register a function that will be executed at this moment.

Updating the component state in this hook is possible, but not recommended. We need to be careful
because updates here will create additional rendering, which in turn will cause other calls to the
patched method. So, we need to be particularly careful to prevent endless cycles.

Like mounted, the patched hook is called in the order: children first, then parent.

willUnmount

willUnmount is a hook that is called just before a component is unmounted from the DOM. This
is a good place to remove listeners, for example.

The onWillUnmount hook is used to register a function that will be executed at this moment.

This is the opposite method of mounted. Note that if a component is destroyed before being mounted,
the willUnmount method may not be called.

Parent willUnmount hooks will be called before children.

willDestroy

Sometimes, components need to do some action in the setup and clean it up when they are inactive.
However, the willUnmount hook is not appropriate for the cleaning operation, since the component
may be destroyed before it has even been mounted. The willDestroy hook is useful in this situation
since it is always called.

The onWillUnmount hook is used to register a function that will be executed at this moment.

willDestroy hooks are first called on children, then on parents.

onError

Sadly, components may crash at runtime. This is an unfortunate reality, and this is why OWL needs
to provide a way to handle these errors.

The onError hook is useful when we need to intercept and properly react to errors that occur in
some sub-components.

Adding an OWL field to the form view 461

There’s more…

There is one more method in the component life cycle, but it is used when you are using subcomponents.
OWL passes the parent component state via the props parameter, and when props is changed,
the willUpdateProps method is called. This is an asynchronous method, which means you can
perform an asynchronous operation such as RPC here.

Adding an OWL field to the form view
Up to this point, we have learned about all the basics of OWL. Now we will move on to more advanced
aspects and create a field widget that can be used in the form view, just like the field widget recipe
from the previous chapter.

Odoo has many widgets in the UI for different functionalities, such as a status bar, checkboxes, and
radio buttons. which makes the operations in Odoo simpler and run with ease. For example, we used
widget='image' to display a binary field as an image. To demonstrate how to create your own
widget, we’ll write one widget that lets the user choose an integer field, but we will display it differently.
Instead of an input box, we will display a color picker so that we can select a color number. Here, each
number will be mapped to a color.

In this recipe, we will create a color picker widget that will save integer values based on the color selected.

To make the example more informative, we will use some advanced concepts of OWL.

Getting ready

For this recipe, we will be using the my_hostel module.

How to do it…

We’ll add a JavaScript file that contains our widget’s logic, an XML file that contains design logic,
and an SCSS file to do some styling. Then, we will add one integer field to the books form to use our
new widget.

Perform the following steps to add a new field widget:

1. Add the category integer field to the hostel.room model as follows:

category = fields.Integer('Category')

2. Add the same field to the form view, with a widget attribute as well:

 <field name="category" widget="category_color"/>

Adding an OWL field to the form view 465

In step 5, we added SCSS for the color. This will help us to have a beautiful UI for the color picker.

In step 6, we added JavaScript for the field component.

We imported the OWL utility and we also imported the component and fieldRegistry.

fieldRegistry is used to list the OWL component as a field component.

In step 7, we created the ColorPill component. The template variable on the component is
the name of the template that is loaded from the external XML file. The ColorPill component
has the pillClicked method, which is called when the user clicks on the color pill. Inside the
method body, we have triggered the onClickColorUpdated event, which will be captured
by the parent OWLCategColorField component as we used colorUpdated on the
OWLCategColorField component.

In step 8 and step 9, we created the OWLCategColorField component by extending Component.
We used the Component because it will have all the utilities that are required to create the field widget.

If you notice, we used the components static variable at the start. You need to list the components via
the components static variable when you are using subcomponents in the template. We also added
the onWillStart method in our example. The willStart method is an asynchronous method,
so we have called RPC (network call) to fetch data regarding the number of the room booked for a
particular color. Toward the end, we added the colorUpdated method, which will be called when
the user clicks on the pill. So, we are changing the values of the field. The this.props.record.
update method is used to set the field values (which will be saved in the database). Note here that
the data triggered from the child component is available under the detail attribute in the event
parameter. Finally, we registered our widget in fieldRegistry, implying that henceforth, we will
be able to use our field via the widget attribute in the form view.

In step 10, we loaded JavaScript and SCSS files into the backend assets.

There’s more…

Understanding QWeb

QWeb is the primary templating engine used by Odoo. It is an XML templating engine and is used
mostly to generate HTML fragments and pages. Template directives are specified as XML attributes
prefixed with t-, for instance, t-if for conditionals, with elements and other attributes being
rendered directly. The following are the different operations of the QWeb template:

• Data output:

QWeb’s output directive, out, will automatically HTML-escape its input, limiting XSS risks
when displaying user-provided content. out takes an expression, evaluates it, and injects the
result into the document:

<p><t t-out="value"/></p>

17
In-App Purchasing with Odoo

Odoo has had built-in support for in-app purchasing (IAP) since version 11. IAP is used to provide
recurring services without any complex configurations. Usually, apps purchased from the app store
only require a one-time payment from the customer, because they are normal modules and once the
user has purchased and started using the module, it won’t cost the developer anything. In contrast to
this, IAP apps are used to provide services to users, and so there is an operational cost to providing
continuous service. In such cases, it is not possible to provide a service with just a single initial purchase.
The service provider needs something that charges the user in a recurring manner, based on usage.
Odoo’s IAP fixes these issues and provides a way to charge based on usage.

In-app purchases typically refer to the ability to buy additional features, content, or services within an
application. However, Odoo is highly customizable, and while it might not have a dedicated IAP module,
you can create similar functionalities using custom development or by leveraging existing modules.

This feature allows users to expand the functionality of their Odoo instance by acquiring additional
apps, features, or services without leaving the Odoo environment. Here’s an overview of Odoo IAP:

• App marketplace integration: Odoo’s IAP is tightly integrated with the Odoo App Store or
marketplace. Users can browse, select, and purchase additional apps or modules from a wide
range of options.

• Easy access to extensions: Users can access and evaluate the available apps and extensions
directly from their Odoo dashboard. This makes it convenient for businesses to extend the
capabilities of their Odoo instance without the need for extensive manual installation.

• Trial versions: Some apps in the marketplace may offer trial versions or limited-time trials,
allowing users to test the functionality of the app before making a purchase. This helps users
make informed decisions.

• Simplified licensing: Odoo IAP simplifies the licensing and subscription management for
the purchased apps. Users can easily subscribe, renew, or manage their licenses without
external processes.

• One-click installation: After purchasing an app, users can typically install it with just one
click from within their Odoo instance. This streamlined process reduces the complexity of
app installation.

In-App Purchasing with Odoo472

• Centralized billing: Billing and payment for the purchased apps are typically managed through
Odoo’s central billing system, simplifying the financial aspects of app acquisition.

• App updates: Odoo IAP often includes automatic updates for purchased apps, ensuring that
users have access to the latest features and security updates.

• Support and documentation: Many apps available through Odoo IAP come with documentation
and support options, making it easier for users to get assistance if needed.

• Integration with core Odoo: The purchased apps are seamlessly integrated with the core Odoo
system, ensuring compatibility and a unified user experience.

There are several use cases where you can use IAP, such as a fax service for sending documents or an
SMS service. In this chapter, we will explain the Partner autocomplete service that will be provided
by Odoo.

In this short chapter, we will cover the following topics:

• IAP concepts

• Buying credits

• IAP accounts

• The IAP portal

• Getting notifications for low credits

IAP concepts
IAP involves several key concepts and elements that are essential to understand when using this
feature within the Odoo ERP system. We will explore the different entities that are a part of the IAP
process and also look at the role of each entity and how they combine to complete the IAP process.

Odoo IAP is a valuable tool for businesses using the Odoo ERP system, as it simplifies the process of
extending and customizing their software environment. It offers a centralized platform for managing
additional apps and modules, helping organizations optimize their business processes and operations.
This feature adds a layer of flexibility and scalability to the Odoo ecosystem, making it an even more
powerful and adaptable solution for a wide range of businesses and industries.

Odoo IAP simplifies the process of discovering, acquiring, and installing additional apps and modules
directly from the Odoo environment. Users can extend the functionality of their Odoo system with
ease, without leaving the platform.

App developers can offer their products with various pricing models, including one-time purchases,
subscription plans, and trial versions. This flexibility caters to diverse customer needs.

Odoo IAP 473

Odoo’s IAP feature significantly enhances the Odoo ERP system’s adaptability and customization
capabilities. It streamlines the process of app acquisition, encourages developer innovation, and offers
a user-centric experience, ultimately contributing to the platform’s versatility and value for businesses
across various industries.

Odoo IAP
IAP simplifies the process of acquiring and managing additional applications, modules, and features
for your Odoo ERP system.

How it works…

There are three main entities in the IAP process: the customer, the service provider, and Odoo itself.
These are described as follows:

• The customer is the end user who wants to use the service. In order to use the service, the
customer needs to install the application provided by the service provider. The customer then
needs to purchase a service plan according to their usage requirements. With that, the customer
can start to use the service straight away. This prevents difficulties for the customer, as it is
not necessary to carry out complex configurations. Instead, they just pay for the service and
start to use it.

• The service provider is the developer who wants to sell the service (probably you, as you are
the developer). The customer will ask the provider for the service, at which point the service
provider will check whether the customer purchased a valid plan and whether there is enough
credit in the customer’s account. If the customer has enough credit, the service provider will
deduct the credit and provide the service to the customer.

• Odoo itself is a kind of broker in this. It provides a medium for handling payments, credits,
plans, and so on. Customers purchase the service credit from Odoo, and the service provider
draws this credit when serving the service. Odoo then bridges the gap between the customer and
the service provider, so the customer has no need to do complex configurations and the service
provider has no need to set up a payment gateway, customer account management, and so on.

There is also an optional entity in the process, which is the external service. In some cases, service
providers use some external services. However, we will ignore external services here, as they are the
secondary service provider. An example of this could be an SMS service. If you are providing an SMS
IAP service to Odoo users, then you (the service provider) will use an SMS service internally.

In-App Purchasing with Odoo474

Buying credits

Each IAP service has its own pricing. Customers have to buy that service from the IAP service provider.
To check your services, go to Settings | Odoo IAP | View My Services.

Figure 17.1 – Buy credits

The preceding screenshot shows the screen you see when you want to buy credits.

IAP accounts

Once you buy credits from the provider, it is stored on IAP accounts, which are to be used for each service.
By default, IAP accounts are common for all companies but can be configured to be company-specific.

Odoo IAP 475

To create a new IAP Account, activate the developer mode and go to Technical Settings | IAP Account.

Figure 17.2 – IAP Accounts

The following is the screenshot of the IAP Account screen:

Figure 17.3 – IAP Account

In-App Purchasing with Odoo476

The IAP portal

The IAP portal is a platform where you can see your IAP services and their credits and can recharge
them by clicking on the Buy Credit button, which will redirect you to the IAP portal. can be set
Threshold once it reaches you will get notified via mentioned email ID.

Figure 17.4 – IAP Account

Get low credits notification

Here, we can set credits in Threshold, which means we have to set a minimum credit limit and email
address. Once it reaches the limit, an automatic reminder will be sent to the mentioned email ID go
to Settings | Odoo IAP | View My Services. Next, unfold the service, check the credits, and configure
it accordingly.

Figure 17.5 – Low credits notification

This is how in-app purchasing in Odoo works. In the next chapter, we’ll see automated test cases.

18
Automated Test Cases

When it comes to developing large applications, using automated test cases is good practice to improve
the reliability of your module. This makes your module more robust. Every year, Odoo releases a
new version of its software, and automated test cases are very helpful in detecting regression in your
application, which may have been caused by a version upgrade. Luckily, any Odoo framework comes
with different automated testing utilities. Odoo includes the following three main types of tests:

• A Python test case: Used to test Python business logic

• A JavaScript QUnit test: Used to test JavaScript implementation in Odoo

• Tours: An integration test to check that Python and JavaScript work with each other properly

In this chapter, we will cover the following recipes:

• Adding Python test cases

• Running tagged Python test cases

• Setting up Headless Chrome for client-side test cases

• Adding client-side QUnit test cases

• Adding tour test cases

• Running client-side test cases from the UI

• Debugging client-side test cases

• Generating videos/screenshots for failed test cases

• Populating random data for testing

Automated Test Cases482

• The TransactionCase class: This class extends SavepointCase and provides transaction-
related functionality. It helps to manage database transactions during the tests.

• The HttpCase class: This class is used to test HTTP requests and responses. It allows you to
simulate HTTP requests and test the responses.

• The BaseCase class: This is a base class for various test cases in Odoo. It provides common
functionality that can be reused in different test scenarios,

• The SingleTransactionCase class: This class extends TransactionCase and
ensures that each test case is executed within a single database transaction. This can be useful
in scenarios where you want to isolate tests completely from each other.

• The FormCase class: This class is used to test form views and their interactions. It provides
methods to simulate user interactions with form views.

• The FunctionCase class: This class is designed to test server-side Python functions. It helps in
testing various functions and methods within the Odoo framework, wrapped over unittest.

These classes simplify the process of developing test cases. In our case, we have used TransactionCase.
Now, TransactionCase runs each test case method in a different transaction. Once a test case
method runs successfully, a transaction is automatically rolled back. This means the next test case
will not have any modification made by the previous test case.

The class method starts from test_ and is considered a test case. In our example, we have added two
test cases. This checks the methods that change the hostel room’s state. The self.assertEqual
method (assertEqual() in Python) is a unittest library function that is used in unit testing to
check the equality of two values. This function will take three parameters as input and return a Boolean
value, depending upon the assert condition. If both input values are equal assertEqual()
will return true else return false) is used to check whether the test case runs successfully. We
have checked the hostel room state after performing operations on the hostel room’s record. So, if the
developer makes a mistake and the method does not change states as expected, the test case will fail.

Important information
Note that the setUp() method will automatically call for every test case we run, so, in this
recipe, we have added two test cases so that setUp() will call twice. As per the code in this
recipe, there will only be one record of the hostel room present during testing because, with
TransactionCase, the transaction is rolled back with every test case.

In Python, a docstring is a string literal that occurs as the first statement in a module, function, class,
or method definition. Docstrings are used to provide documentation about what a piece of code does.
They serve as a form of inline documentation that can be accessed using various tools, such as the
help() function.. This can be very helpful to check the status of a particular test case.

Automated Test Cases486

There’s more...

During the development of the test case, it is important to run the test case for just one module. By
default, the technical name of the module is added as a tag, so you can use the module’s technical
name with the --test-tags option. For example, if you want to run test cases for the my_hostel
module, then you can run the server like this:

./odoo-bin -c server.conf -d db_name -i my_hostel --test-tags=my_
hostel

The command given here will run the test case in the my_hostel module, but it will still decide the
sequence based on the at_install and post_install options.

Setting up Headless Chrome for client-side test cases
Odoo employs Headless Chrome to execute JavaScript and tour test cases, facilitating the simulation
of end-user environments. Headless Chrome, devoid of the complete UI, enables seamless execution
of JavaScript test cases, ensuring a consistent testing environment.

How to do it...

You will need to install Chrome to enable a JavaScript test case. For the development of the modules,
we will mostly use the desktop OS. Consequently, if you have a Chrome browser installed on your
system, then there is no need to install it separately. You can run client-side test cases with desktop
Chrome. Make sure that you have a Chrome version higher than Chrome 59. Odoo also supports
the Chromium browser.

Note
Headless Chrome client-side test cases work fine with macOS and Linux, but Odoo does not
support Headless Chrome test cases on Windows.

The situation changes slightly when you want to run test cases on the production server or Server OS.
Server OS does not have a GUI, so you need to install Chrome differently. If you are using a Debian-
based OS, you can install Chromium with the following command:

apt-get install chromium-browser

Important information
Ubuntu 22.04 Server Edition has not enabled the universe repository by default. So, it’s
possible that installing chromium-browser will show an installation candidate error. To fix
this error, enable the universe repository with the following command – sudo add-apt-
repository universe.

Adding client-side QUnit test cases 487

Odoo also uses WebSockets for JavaScript test cases. For that, Odoo uses the websocket-client
Python library. To install it, use the following command:

pip3 install websocket-client

Now, your system is ready to run client-side test cases.

How it works...

Odoo uses Headless Chrome for JavaScript test cases. The reason behind this is that it runs test
cases in the background, so it can be run on Server OS, too. Headless Chrome prefers to run the
Chrome browser in the background, without opening a GUI browser. Odoo opens a Chrome tab
in the background and starts running the test cases in it. It also uses jQuery’s QUnit for JavaScript
test cases. In the next few recipes, we will create a QUnit test case for our custom JavaScript widgets.

For test cases, Odoo opens Headless Chrome in a separate process, so to find out the status of a test
case running in that process, the Odoo server uses WebSockets. The websocket-client Python
library is used to manage WebSockets to communicate with Chrome from the Odoo server.

Adding client-side QUnit test cases
Building new fields or views is very simple in Odoo. In just a few lines of XML, you can define a new
view. However, under the hood, it uses a lot of JavaScript. Modifying/adding new features on the client
side is complex, and it might break a few things. Most client-side issues go unnoticed, as most errors
are only displayed in the console. So, QUnit test cases are used in Odoo to check the correctness of
different JavaScript components.

QUnit is a JavaScript testing framework primarily used for client-side testing. It’s commonly associated
with testing JavaScript code in web applications, particularly for frontend development. QUnit is
often used to test the logic and behavior of JavaScript functions, modules, and components in a web
browser environment.

Getting ready

For this recipe, we will continue using the my_hostel module from the previous recipe. We will
add a QUnit test case for the int_color widget.

Automated Test Cases490

To run this test case, start your server with the following command in the Terminal:

./odoo-bin -c server.conf -i my_hostel,web --test-enable

To check that the tests have run successfully, search for the following log:

... INFO test odoo.addons.web.tests.test_js.WebSuite: console log:
"Color Picker Widget Tests" passed 2 tests.

How it works...

In Odoo, JavaScript test cases are added to the /static/tests/ directory. In step 1, we added
a colorpicker_test.js file for the test case. In that file, we imported the registry for use in
serviceRegistry and setupViewRegistries and makeView from test helpers. makeView
is imported because we created the int_color widget for the form view, so to test the widget, we
will need the form view.

@web/../tests/helpers/utils will provide us with the test utilities we require to build the
JavaScript test cases. If you don’t know how JavaScript import works, refer to the Extending CSS and
JavaScript for the website recipe in Chapter 14, CMS Website Development.

Odoo client-side test cases are built with the QUnit framework, which is the jQuery framework for
the JavaScript unit test case. Refer to https://qunitjs.com/ to learn more about this. The
beforeEach function is called before running the test cases, and this helps to initialize the test data.
The reference of the beforeEach function is provided by the QUnit framework itself.

We initialized some data in the beforeEach function. Let’s see how that data is used in the test case.
The client-side test case runs in an isolated (mock) environment, and it doesn’t make a connection
to the database, so for these test cases, we need to create test data. Internally, Odoo creates the mock
server to mimic the Remote Procedure Call (RPC) calls and uses the serverData property as the
database. Consequently, in beforeEach, we initialized our test data in the serverData property.
The keys in the serverData property are considered a table, and the values contain information
about the fields and the table rows. The fields key is used to define table fields, and the records
key is used for the table rows. In our example, we added a room table with three fields – name(char),
room_no(char), and color(integer). Note that, here, you can use any Odoo fields, even
relational fields – for example, {string: "M2o Field", type: "many2one", relation:
'partner'}. We also added two room records with the records key.

Then, we added the test cases with the QUnit.test function. The first argument in the function is
string to describe the test case. The second argument is the function to which you need to add code
for the test cases. This function is called from the QUnit framework, and it passes the assert utilities as
the argument. In our example, we passed the number of expected test cases in the assert.expect
function. We are adding two test cases, so we passed 2.

Adding tour test cases 491

We want to add to the test case the int_color widget in the editable form view, so we created the
editable form view with makeView. The makeView function accepts different arguments, as follows:

• resModel is the name of the model for which the given view is created. All of the models
are listed in the resModel as properties. We want to create a view for the room model, so in
our example, we used the room as a model.

• serverData is the record that we are going to use in the view. The views key from serverData
is the definition of the view you want to create. Because we want to test the int_color
widget, we passed the view definition with the widget. Note that you can only use the fields
that are defined in the model.

• Type: The type of view.

After creating the form view with the int_color widget, we added two test cases. The first one is
used to check the number of color pills on the UI, and the second test case is used to check that the
pill is activated correctly after the click. We have the strictEqual function from the asserted utility
of the QUnit framework. The strictEqual function passes the test case if the first two arguments
match. If they do not match, it will fail the test case.

There’s more...

There are a few more assert functions available for QUnit test cases, such as assert.deepEqual,
assert.ok, and assert.notOk. To learn more about QUnit, refer to its documentation
at https://qunitjs.com/.

Adding tour test cases
You have now seen the Python and JavaScript test cases. Both of these work in an isolated environment,
and they don’t interact with each other. To test integration between JavaScript and Python code, tour
test cases are used.

Getting ready

For this recipe, we will continue using the my_hostel module from the previous recipe. We will add
a tour test case to check the flow of the room model. Also, make sure you have installed the web_tour
module or have added the web_tour module dependency to the manifest.

Automated Test Cases494

In step 1, we registered a new tour with the name hostel_tour. This tour is exactly like the tour
we created in the Improve onboarding with tours recipe in Chapter 15. In step 2, we added the steps
for the tours.

Here, we have two main changes compared to the onboarding tour. First, we added a test=true
parameter for the tour definition; second, we added one extra property, run. In the run function,
you have to write the logic to perform the operation that is normally done by the user. For example,
in the fourth step of the tour, we ask the user to enter the room title.

To automate this step, we added a run function to set the value in the title field. The run function
passes the action utility as the parameter. This provides some shortcuts to perform basic actions. The
most important ones are as follows:

• actions.click(element) is used to click on a given element.

• actions.dblclick(element) is used to double-click on a given element.

• actions.tripleclick(element) is used to triple-click on a given element.

• actions.text(string) is used to set the input values.

• actions.drag_and_drop(to, element) is used to drag and drop an element.

• actions.keydown(keyCodes, element) is used to trigger particular keyboard
events on an element.

• actions.auto() is the default action. When you don’t pass the run function in the tour
step, actions.auto() is performed. This usually clicks on the trigger element of the tour
step. The only exception here is an input element. If the trigger element is input, the tour
will set the default value, Test, in the input. That is why we don’t need to add run functions
to all of the steps.

Alternatively, you can perform whole actions manually if default actions are not enough. In the next
tour step, we want to set a value for the color picker. Note that we used the manual action because
default values won’t help here. Consequently, we added the run method with the basic jQuery
code to click on the third pill of the color picker. Here, you will find the trigger element with the
this.$anchor property.

By default, registered tours are displayed to the end user to improve the onboarding experience. In
order to run them as a test case, you need to run them in Headless Chrome. To do so, you need to use
the HttpCase Python test case. This provides the browser_js method, which opens the URL
and executes the command passed as the second parameter. You can run the tour manually, like this:

odoo.__DEBUG__.services['web_tour.tour'].run('hostel_tour')

In our example, we passed the name of the tour as the argument in the browser_js method. The
next parameter is used to wait for a given object to be ready before performing the first command. The
last parameter in the browser_js() method is the name of the user. This username will be used
to create a new test environment, and all of the test actions will be performed on behalf of this user.

Running client-side test cases from the UI 495

Running client-side test cases from the UI
Odoo provides a way to run client-side test cases from the UI. By running the test case from the UI,
you will be able to see each step of the test case in action. This way, you can verify that the UI test
case works exactly as you wanted.

How to do it...

You can run both the QUnit test case and the tours test case from the UI. It is not possible to run
Python test cases from the UI, as it runs on the server side. In order to see the options to run test cases
from the UI, you need to enable developer mode.

Running QUnit test cases from the UI

Click on the bug icon to open the drop-down menu, as shown in the following figure. Click on the
Run JS Tests option:

Figure 18.1 – The option to run test cases

Automated Test Cases496

This will open the QUnit suite, and it will start running the test cases one by one, as shown in the
following screenshot. By default, it will only show the failed test cases. To show all the passed test
cases, uncheck the Hide passed tests checkbox, as shown in the following screenshot:

Figure 18.2 – The results of the QUnit test cases

Running tours from the UI

Click on the bug icon to open the drop-down menu, as shown in the following screenshot, and then
click on Start Tour:

Figure 18.3 – The option to run tour test cases

Debugging client-side test cases 497

This will open a dialog with a list of registered tours, as you can see in the following screenshot. Click
on the play button on the side to run the tour:

Figure 18.4 – A list of tour test cases

The test tours only display in a list if you have enabled test assets mode. If you can’t find the hostel_
tour tour in the list, make sure you have activated test assets mode.

How it works...

The UI for QUnit is provided by the QUnit framework itself. Here, you can filter the test cases for the
modules. You can even run a test case for just one module. With the UI, you can see the progress of
each test case, and you can drill down to each step of the test case. Internally, Odoo just opens the
same URL in Headless Chrome.

Clicking on the Run tours option will display the list of available tours. By clicking on the play button
on the list, you can run the tour. Note that when the tour runs via the command-line options, it runs
in the rolled-back transaction, so changes made through the tour are rolled back after the tour is
successful. However, when the tour runs from the UI, it works just as though a user was operating it,
meaning changes made from the tour are not rolled back and stay there, so use this option carefully.

Debugging client-side test cases
Developing complex client-side test cases can be a headache. In this recipe, you will learn how you
can debug the client-side test cases in Odoo. Instead of running all of the test cases, we will run just
the one. Additionally, we will display the UI of the test case.

Automated Test Cases500

This will run only one test case, which is our color picker test case.

Figure 18.6 – Color picker test case

How it works...

In step 1, we replaced QUnit.test with QUnit.only. This will run this test case only. During
the development of the test case, this can be time-saving. Note that using QUnit.only will stop
the test case from running via the command-line options. This can only be used for debugging or
testing, and it can only work when you open the test case from the UI, so don’t forget to replace it
with QUnit.test after the development.

In our QUnit test case example, we created the form view to test the int_color widget. If you run
the QUnit test cases from the UI, you will find that you are not able to see the created form views
in the UI. From the UI of the QUnit suite, you are only able to see the logs. This makes developing
a QUnit test case very difficult. To solve this issue, the debug parameter is used in the makeView
function. In step 2, we added debug: true in the makeView function. This will display the test
form view in the browser. Here, you will be able to locate Document Object Model (DOM) elements
via the browser debugger.

Warning
At the end of the test case, we destroy the view through the destroy() method. If you have
destroyed the view, then you won’t be able to see the form view in the UI, so in order to see it in
the browser, remove that line during development. This will help you debug the test case.

Running QUnit test cases in debug mode helps you develop test cases very easily and quickly.

Generating videos/screenshots for failed test cases
Odoo uses Headless Chrome, which opens new possibilities. Starting from Odoo 12, you can record
videos of the failed test cases, and you can take screenshots of them as well.

Generating videos/screenshots for failed test cases 501

How to do it...

Recording a video for a test case requires an ffmpeg package:

1. To install this, you need to execute the following command in the terminal (note that this
command only works on a Debian-based OS):

apt-get install ffmpeg

2. To generate a video or screenshot, you will need to provide a directory location to store the
video or screenshots.

3. If you want to generate a screencast (video) of a test case, use the --screencasts command,
like this:

./odoo-bin -c server.conf -i my_hostel --test-enable
--screencasts=/home/pga/odoo_test/

4. If you want to generate screenshots of a test case, use the --screenshosts command, like this:

./odoo-bin -c server.conf -i my_hostel --test-enable
--screenshots=/home/pga/odoo_test/

How it works...

In order to generate screenshots/screencasts for failed test cases, you need to run the server with the
path to save the video or image files. When you run the test cases, and if a test case fails, Odoo will
save a screenshot/video of the failed test case in the given directory.

To generate a video of a test case, Odoo uses the ffmpeg package. If you haven’t installed this package
on the server, then it will only save a screenshot of a failed test case. After installing the package, you
will be able to see the mp4 file of any failed test case.

Note
Generating videos for test cases can consume more space on disks, so use this option with
caution and only when it is really necessary.

Keep in mind that screenshots and videos are only generated for failed test cases, so if you want to
test them, you need to write a test case that fails.

Automated Test Cases504

Just like populate.constant, Odoo provides several other generators to populate data; here is
a list of those generators:

• populate.randomize(list) will return a random element from the given list.

• populate.cartesian(list) is just like randomize(), but it will try to include all
the values from the list.

• populate.iterate(list) will iterate over a given list, and once all the elements are
iterated, it will return based on randomize or random elements.

• populate.constant(str) is used to generate formatted strings. You can also pass the
formatter parameter to format values. By default, the formatter is a string-format function.

• populate.compute(function) is used when you want to compute a value based on
your function.

• populate.randint(a, b) is used to generate a random number between the a and
b parameters.

These generators can be used to generate test data of your choice.

Another important attribute is _populate_sizes. It is used to define the number of records you
want to generate based on the --size parameter. Its value always depends on the business object.

In step 3, we generated a data hostel room model. To populate test data, you will need to use the
--size and --model parameters. Internally, Odoo uses the _populate method to generate
random records. The _populate method itself uses the _populate_factories method to
get random data for records. The _populate method will generate data for the models given in
the --model parameter, and the amount of test data will be based on the _populate_sizes
attribute of the model. Based on our example, if we use –-size=medium, the data for 100 hostel
rooms will be generated.

Note
If you run the populate command multiple times, the data will be generated multiple times
as well. It’s important to use this carefully; if you run the command in a production database,
it will generate test data in the production database itself. This is something you want to avoid.

19
Managing, Deploying, and

Testing with Odoo.sh

In 2017, Odoo released Odoo.sh, a new cloud service. Odoo.sh is a platform that makes the process
of testing, deploying, and monitoring Odoo instances as easy as possible. In this chapter, we will
look at how Odoo.sh works, when you should use it over other deployment options, and its features.

In this chapter, we will cover the following recipes:

• Exploring some basic concepts of Odoo.sh

• Creating an Odoo.sh account

• Adding and installing custom modules

• Managing branches

• Accessing debugging options

• Getting a backup of your instance

• Checking the status of your builds

• All Odoo.sh options

Important note
This chapter is written under the assumption that you have Odoo.sh access. It is a paid service,
and you will need a subscription code to access the platform. If you are an Odoo partner,
you will get a free Odoo.sh subscription code. Otherwise, you will need to purchase it from
https://www.odoo.sh/pricing. You can still go through this chapter even if you don’t
have a subscription code. It contains enough screenshots to help you understand the platform.

Managing, Deploying, and Testing with Odoo.sh508

A note for print readers
For the benefit of print readers, there are certain images showing the layout of a window in
this chapter that may require zooming to view them clearly. You can access the graphic bundle
containing high-quality images at this link: https://packt.link/gbp/9781805124276

Exploring some basic concepts of Odoo.sh
In this recipe, we will look at some of the features of the Odoo.sh platform. We will answer some basic
questions, such as when you should use it and why it should be used.

What is Odoo.sh?

Odoo.sh is a cloud service that provides the platform with the ability to host Odoo instances with
custom modules. Putting it simply, it is Odoo’s platform as a service (PaaS) cloud solution. It is
fully integrated with GitHub. Any GitHub repository with valid Odoo modules can be launched on
Odoo.sh within minutes. You can examine the ongoing development by testing multiple branches in
parallel. Once you have moved your instance to production, you can test some new features with a
copy of the production database; this helps to avoid regression. It also takes daily backups. With Odoo.
sh, you can deploy Odoo instances efficiently, even if you don’t have sound knowledge of DevOps.
It automatically sets up an Odoo instance with top-notch configurations. Note that Odoo.sh is the
Enterprise edition of Odoo. You cannot use the Odoo Community edition because Odoo.sh will only
load the Enterprise edition.

Why was Odoo.sh introduced?

Before Odoo.sh was introduced, there were two ways to host Odoo instances. The first was to use Odoo
Online, which is a software as a service (SaaS) cloud service. The second method was the on-premises
option, in which you needed to host an Odoo instance and configure it on your server yourself. Now,
both of these options have pros and cons. In the Odoo online option, you don’t need to configure or
deploy it, as it is a SaaS service. However, you cannot use custom modules on this platform. On the
other hand, with the on-premises option, you can use custom modules, but you need to do everything
yourself. You need to purchase the server, you need to configure the database and NGINX, and you
need to set up the mail server, daily backups, and security.

For this reason, there was a need for a new option that provided the simplicity of Odoo online and
the flexibility of the on-premises option. Odoo.sh lets you use custom modules without a complex
configuration. It also provides additional features, such as testing branches, staging branches, and
automated tests.

Exploring some basic concepts of Odoo.sh 509

Important note
It is not completely true that customization is not possible on Odoo online. With Odoo Studio
and other techniques, you can carry out customization. The scope of this customization,
however, is very narrow.

When should you use Odoo.sh?

If you don’t need customization or you only need a small amount of customization that is possible
in Odoo online, you should go for Odoo online. This will save both time and money. If you want a
significant amount of customization and you have teamed up with expert DevOps engineers, you
can choose the on-premises option. Odoo.sh is suitable for when you have good knowledge of Odoo
customization but do not have any expertise in DevOps. With Odoo.sh, there’s no need to carry out
complex configurations; you can start using it straight away, along with your customization. It even
configures the mailing server.

Odoo.sh is very useful when you are developing a large project with agile methodology. This is because
on Odoo.sh, you can test multiple development branches in parallel and deploy the stable development
in production in minutes. You can even share the test development with the end customer.

What are the features of Odoo.sh?

Odoo has invested a lot of time in the development of the Odoo.sh platform, and it is packed with
features as a result. Let’s have a look at the features of Odoo.sh. Note that Odoo adds new features from
time to time. In this section, I have mentioned the features that are available at the time of writing
this book, but you might find some further features as well:

• GitHub integration: This platform is fully integrated with GitHub. You can test every branch,
pull, or commit here. For every new commit, a new branch will be pulled automatically. It will
also run an automated test for the new commits. You can even create/merge branches from
the Odoo.sh UI itself.

• Web shell: Odoo.sh provides the web shell in the browser for the current build (or production
server). Here, you can see all the modules and logs.

• Web code editor: Just like the web shell, Odoo.sh provides the code editor in the browser. Here,
you can access all of the source code and also get the Odoo interactive shell for the current build.

• SSH access: By registering your public keys, you can connect to any container via SSH.

• External dependencies: You can install any Python package. To do this, you just need to add
requirement.txt to the root of your GitHub repository. Right now, you can only install
Python packages. It is not possible to install system packages (apt packages).

• Server logs: You can access the server log for each build from this browser. These logs are in
real time, and you can also filter them from here.

Managing, Deploying, and Testing with Odoo.sh510

• Automated tests: Odoo.sh provides your own runbot, which you can use to perform a series of
automated tests for your development. Whenever you add a new commit or a new development
branch, Odoo.sh will automatically run all of the test cases and show the status of the tests. You
can access the full test log, which will help you find issues if a test case fails.

• Staging and development branches: Odoo.sh provides two types of branches: the development
branch and the staging branch. In the development branch, you can test ongoing development
with demonstration data. The staging branch is used when the development is finished, and
you want to test the feature before merging it into production. The staging branch does not
load the demonstration data; instead, it uses a copy of the production server.

• Mail server: Odoo.sh automatically sets up a mail server for the production server. Just like
Odoo online, Odoo.sh does not need any extra configuration for email, although it is possible
to use your own mail server.

• Mail catcher: The staging branch uses a copy of your production database, so it has information
about your real customers. Testing on such a database can make it possible to send emails to
real customers. To avoid this issue, the email feature is only activated on production branches.
Staging and development branches do not send real emails; instead, they use a mail catcher so
that you can test and see emails in the staging and development branches.

• Share the build: With Odoo.sh, you can share the development branches with your customers
so they can test them before merging the feature into production.

• Faster deployment: As Odoo.sh is fully integrated with GitHub, you can merge and deploy
the development branches directly from the browser with a simple drag-and-drop procedure.

• Backup and recovery: Odoo.sh keeps full backups for the production instance. You can
download or restore any of these backups in just a few clicks. Refer to the Getting a backup of
your instance recipe to learn more about backups. Odoo.sh keeps 14 full backups for up to 3
months: 1 per day for 7 days, 1 per week for 4 weeks, 1 per month for 3 months.

• Community modules: You can test and install any community module in a few simple clicks.
You can also test free modules directly from the app store.

Creating an Odoo.sh account
In this recipe, we will create an Odoo.sh account and an empty repository for the custom add-ons.

Getting ready

For this recipe, you will need a GitHub account on which you can add custom modules. You will also
need an Odoo.sh subscription code. If you are an Odoo partner, you will get a free Odoo.sh subscription
code. Otherwise, you will need to purchase it from https://www.odoo.sh/pricing.

Creating an Odoo.sh account 511

How to do it...

Follow these steps to create an Odoo.sh account:

1. Open https://www.odoo.sh and click on Sign in in the top menu. This will redirect
you to the GitHub page:

Figure 19.1 – GitHub authentication

2. Give authorization to your repositories, which will redirect you back to Odoo.sh. Fill in the
form to deploy the instance:

Managing, Deploying, and Testing with Odoo.sh512

Figure 19.2 – Create an Odoo.sh instance

3. This will deploy the instance, and you will be redirected to the Odoo.sh control panel. Wait for
the build status to be successful; then, you can connect to your instance with the CONNECT
button displayed in the following screenshot:

Figure 19.3 – Connect to the development instance

Creating an Odoo.sh account 513

Upon clicking CONNECT, you will be automatically logged in to your instance. If you are an admin,
by clicking on the arrow button at the side, you can connect as other users as well.

How it works...

The Odoo.sh platform is integrated with GitHub. You need to give full authorization to Odoo.sh so
that it can access your repositories. Odoo.sh will also create the webhooks. GitHub webhooks notify
the Odoo.sh platform when a new commit or branch has been added to your repository. When you
sign in for the first time, Odoo.sh will redirect you to GitHub. GitHub will show a page similar to
the screenshot in step 1, in which you will need to provide access to all of your private and public
repositories. If you are not the owner of the repository, you will see the button to make an access
request to the owner for the rights.

After you grant repository access to Odoo.sh, you will be redirected back to Odoo.sh, where you
will see the form to deploy the Odoo instance. To create a new instance, you will need to add the
following information:

• GitHub repository: Here, you will need to set the GitHub repository with your custom modules.
The modules in this repository will be available to the Odoo instance. You will see a list of all
your existing repositories. You can select one of them or create a new one.

• Odoo version: Choose the Odoo version you want to deploy. You can select from the currently
supported Odoo LTS versions. Make sure you select the version that is compatible with the
modules in the GitHub repository. For our example, we will select version 14.0.

• Subscription code: This is the code to activate the instance. You will receive the code via email
after purchasing an Odoo.sh plan; if you are an official Odoo partner, you can ask for this code
from Odoo.

• Hosting location: Here, you need to choose a server location based on your geographic location.
The server that is nearest will give the best performance. The latency displayed under the hosting
location is based on your location. So if you are creating an instance for your customer and
the customer is in another country, you will need to select a server location that is near the
customer’s location with lower latency.

• Once you submit this form, your Odoo instances will be deployed, and you will be redirected
to the Odoo.sh control panel. Here, you will see your first build. It will take a few minutes, and
then you will be able to connect to your Odoo instance. If you check the left panel, you will
see that there are no branches in the production and staging sections and that only one branch
is in the development section. In the next few recipes, we will see how you can create staging
and production branches.

Adding and installing custom modules 515

Figure 19.4 – New build for the hostel module

3. After a new commit is pulled in your Odoo.sh project, you will see the installation progress on
the right side. Wait for the installation to be complete, then access your instance by clicking on
the green CONNECT button. It will open the Odoo instance with the my_hostel module:

Figure 19.5 – Hostel module installed

Explore and test the my_hostel module. Note that this is not a production build, so you can test
it however you like.

Managing, Deploying, and Testing with Odoo.sh516

How it works...

In step 1, we uploaded the my_hostel module to the GitHub repository. Odoo.sh will be notified
about these changes instantly through a webhook. Then, Odoo.sh will start building a new instance. It
will install all your custom modules and their dependencies. A new build will automatically perform
the test cases for the installed modules.

Important note
By default, Odoo.sh will only install your custom modules and their dependencies. If you
want to change this behavior, you can do it from the module installation section of the global
settings. We will look at these settings in detail in the next few recipes.

In the HISTORY tab, you will be able to see the full history of the branch. Here, you can find some
basic information about the build. It will display the commit message, the author information, and the
GitHub link of the commit. On the right side, you will get the live progress of the build. Note that the
builds in the development section will install the modules with demonstration data. In the next few
recipes, you will see the difference between the production, development, and staging branches in detail.

After a successful build, you will see a button to connect the instance. By default, you will be connected
with the admin user. Using CONNECT as a drop-down menu, you can log in as a demo and portal
user instead.

There’s more...

Odoo.sh will create a new build for every new commit. You can change this behavior from the
SETTINGS tab of the branch:

Figure 19.6 – Development branch options

Managing branches 517

Here, you will find several options. One of them is Behavior upon new commits. It has three
possible values:

• New Build: This option will create a new build for each commit

• Do Nothing: This option will ignore the new commit and do nothing

• Update Previous Build: This will use an existing build for the new commit

The Module installation and Test suite options will help you control the test suites. You can disable
testing and you can run specific test cases with these options.

Managing branches
In Odoo.sh, you can create multiple development and staging branches along with the production
branch. In this recipe, we will create different types of branches and see the differences between them.
You will see the full workflow of how you can develop, test, and deploy the new features.

Getting ready

Visit https://www.odoo.sh/project and open the project we created in the Creating an
Odoo.sh account recipe. We will create a development branch for the new feature and then test it in
the staging branch. Finally, we will merge the feature in the production branch.

How to do it...

In this recipe, we will create all types of branches in Odoo.sh. At the moment, we don’t have any
branches in production, so we will start by creating a production branch.

Creating the production branch

Right now, we only have one main branch in the Development section. The last build of the main
branch shows a green label that reads Test: success, meaning that all of the automated test cases have
run successfully. We can move this branch into the Production branch, as the test case status shows
that everything is fine. In order to move your main branch into the Production branch, you just need
to drag the main branch from the Development section and drop it in the Production section, as
shown in the following screenshot:

Managing, Deploying, and Testing with Odoo.sh518

Figure 19.7 – Move the main branch to Production

This will create your Production branch. You can access the Production branch with the Connect
button on the right side. Once you open the production instance, you will notice that there have been
no applications installed in the production database. This is because the production instance requires
you or your end customer to install and configure the operation according to the requirements. Note
that this is a production instance, so in order to keep the instance running, you need to enter your
Enterprise subscription code.

Creating a development branch

You can create development branches directly from the browser. Click on the plus (+) button next to
the Development section. This will show two types of input. One is the branch to fork, and the other
is the name of the development branch. After filling in the input, hit the Enter key.

This will create a new branch by forking the given branch, as shown in the following screenshot:

Figure 19.8 – Create a new development branch

Managing, Deploying, and Testing with Odoo.sh520

production database. To move from the development branch to the Staging branch, just drag and
drop the branch into the Staging section:

Figure 19.9 – Move the development branch to Staging

Once you move the Development branch to the Staging section, you can test your new development
with production data. Just like any other build, you can access the Staging branch with the CONNECT
button on the right. The only difference is that you will be able to see the data of the production database
in this case. Here, your development module is only upgraded automatically if you have increased
the module version from the manifest.

Important note
The staging branch will use a copy of the production database, so the staging instance will have
real customers and their emails. For this reason, in the staging branch, real emails are disabled
so that you don’t send any by accident when testing a new feature in the staging branch.

If you haven’t changed the module version, you will need to upgrade the modules manually to see
the new features in action.

Merging new features in the production branch

After you test the new development with the production database (in the staging branch), you can
deploy the new development into the Production branch. Like before, you just need to drag and
drop the Staging branch into the Production branch. This will merge the new feature branch into
the main branch. Like the Staging branch, your development module is only upgraded automatically
if you have increased the module version from manifest. After this, the new module is available for
the end customer:

Managing branches 521

Figure 19.10 – Merge changes to production

Once you drop the staging branch to Production, a popup will be displayed with two options:

• Rebase and Merge: This will create a pull request and merge it with the rebase so you will
have liner history.

• Merge: This will create a merge commit without fast-forwarding:

Figure 19.11 – Display popup for Merge and Rebase and Merge button

How it works...

In the previous example, we performed a full workflow to deploy a new feature into production. The
following list explains the purposes of the different types of branches in Odoo.sh:

• Production branch: This is the actual instance that is used by the end customer. There is only
one production branch, and the new features are intended to merge with this branch. In this
branch, the mailing service is active, so your end customer can send and receive emails. Daily
backup is also active for this branch.

• Development branches: This type of branch shows all the active development. You can create
unlimited development branches, and every new commit in the branch will trigger a new build.

Managing, Deploying, and Testing with Odoo.sh522

The database in this branch is loaded with the demonstration data. After the development is
complete, this branch will be moved to the staging branch. The mailing service is not active
in these branches.

• Staging branches: This is the intermediate stage in the workflow. A stable development will
be moved to the staging branch to be tested with a copy of the production branch. This is a
very important step in the development life cycle; it might happen that a feature that works
fine in the development branch does not work as expected with the production database. The
staging branches give you an opportunity to test the feature with the production database before
deploying it in production. If you find any issues with the development in this branch, you can
move the branch back to development. The number of staging branches is based on your Odoo.
sh plan. By default, you only have one staging branch, but you can purchase more if you want to.

This is the complete workflow of how new features should be merged into production. In the next
recipe, you will see some other options that we can use with these branches.

Accessing debugging options
Odoo.sh provides different features for analysis and debugging purposes. In this recipe, we will explore
all of these features and options.

How to do it...

We will be using the same Odoo.sh project for this recipe. Each option will be shown in a different
section with a screenshot.

Branch history

You have already seen this feature in previous recipes. The HISTORY tab shows the full history of
the branch. You can connect to the builds from here:

Figure 19.12 – The HISTORY tab

Accessing debugging options 523

In the HISTORY tab, you can see all past actions performed on a selected branch. It will display logs,
merges, new commits, and database restores.

Mail catcher

The staging branch uses a copy of your production database, so it has information about your customers.
Testing the staging branch can send emails to real customers. This is why emails are only activated
on production branches. The staging and development branches do not send real emails. If you want
to test the email system before deploying any feature into production, you can use the mail catcher,
where you can see the list of all outgoing emails. The mail catcher will be available in the staging and
development branches.

The mail catcher will display an email with the source and any attachments, as shown in the
following screenshot:

Figure 19.13 – Mail catcher

In the MAILS tab, you can see a list of all the captured mail with all attachments. Note that the MAILS
tab will only be displayed in the staging and development branches.

Web shell

From the SHELL tab, you can access the web shell. Here, you can access the source code, the logs, the
file store, and so on. It provides all of the shell features with editors such as nano and Vim. You can
install the Python package with pip and maintain multiple tabs.

Managing, Deploying, and Testing with Odoo.sh526

As depicted in the preceding screenshot, you will be able to update files from the editor. Odoo will
detect the changes automatically and restart the server. Note that if you make changes in data files,
you will need to update the module.

Logs

From the LOGS tab, you can access all of the logs for your instance. You can see the live logs without
reloading the pages. You can filter the logs from here. This allows you to find issues from the production
server. Here is a list of the different log files you can find in the LOGS tab:

• install.log: This is for the logs that are generated when installing the modules. The logs
of all the automated test cases will be located here.

• pip.log: You can add Python packages with the requirement.txt file. In this log file,
you will find the installation log of these Python packages.

• odoo.log: This is the normal access log of Odoo. You will find the full access log here. You
should look in this log to check production errors.

• update.log: When you upload a new module with a different manifest version, your module
gets updated automatically. This file contains the logs of these automatic updates.

Take a look at the following screenshot. This shows the live logs for the production branch:

Figure 19.16 – Server log

The preceding screenshot shows that the logs are live, so you will be able to see new logs without
reloading. Additionally, you can search for a particular log with the textbox in the top-right corner
of the UI.

Getting a backup of your instance 527

There’s more...

Some commonly used git commands are available on top of the module, as shown in the following
screenshot. You can run these by using the Run button on the left. These commands can’t be edited,
but if you want to run a modified command, you can copy it from here and then run it from the shell:

Figure 19.17 – Git commands

You can execute these git commands in the shell to perform various operations, as depicted in the
preceding screenshot.

Getting a backup of your instance
Backups are essential for the production server. Odoo.sh provides a built-in backup facility. In this
recipe, we will illustrate how you can download and restore backups from Odoo.sh.

How to do it...

In the production branch, you can access the full information about the backups from the BACKUPS
tab at the top. This will display a list of backups:

Figure 19.18 – Backups manager

From the buttons at the top, you can carry out backup operations, such as downloading the dump,
performing a manual backup, or restoring from a backup. A database backup can take a long time,
so it will be done in the background. You will recieve a notification on the bell icon at the top when
it is completed.

Managing, Deploying, and Testing with Odoo.sh528

How it works...

Odoo automatically takes a backup of your production instance daily. Odoo also takes an automatic
backup whenever you merge a new development branch and update the module. You can also perform
a manual backup using the button at the top.

Odoo.sh keeps a total of 14 full backups for the Odoo production instance for up to 3 months—1 per
day for 7 days, 1 per week for 4 weeks, and 1 per month for 3 months. From the BACKUPS tab, you
can access 1 month of backups (all 7 days of the week and 4 weekly backups).

If you are moving to Odoo.sh from the on-premises or online option, you can import your database
using the Import Database button. If you import your database directly into production, it might
cause issues. To avoid this, you should import the database into the staging branch first.

Checking the status of your builds
Whenever you make a new commit, Odoo.sh creates the new commit. It also performs automated
test cases. To manage all of this, Odoo.sh has its own version of runbot. In this recipe, we will check
the statuses of all the builds.

How to do it...

Click on the Builds menu at the top to open the list of builds. Here, you can see a full overview of all
of the branches and their commits:

Figure 19.19 – Build status

By clicking on the Connect buttons, you can connect to the instances. You can see the status of the
build by the background color of the branch.

How it works...

On the runbot screen, you will get extra control over the builds. You can connect to the previous builds
from here. Different colors show the status of the build. Green means that everything is fine; yellow

Checking the status of your builds 529

indicates a warning, which can be ignored, but it is recommended that you fix it; red means there is
a critical issue that you have to fix before merging the development branch into production. The red
and yellow branches show the exclamation icon, (!), near the Connect button. When you click on
this, you will get a popup with the error and warning log. Usually, you need to search the installation
log files to find the error or warning logs, but this popup will filter out the other logs and only display
the error and warning logs. This means that whenever a build goes red or yellow, you should come
here and fix the errors and warnings before merging them into production.

Inactive development branches are destroyed after a few minutes. Normally, a new build will be created
when you add a new Commit button. If you want to reactivate the build without a new commit;
however, you can use the Rebuild button on the left side. The builds for the staging branches are also
destroyed after a few minutes, apart from the last one, which will remain active.

There’s more...

From the Status menu in the bar at the top, you can see the overall statistics of your instance. The
platform servers are continuously monitored. On the Status screen, you will see the statistics of the
server’s availability, which will be computed automatically from the platform’s monitoring system.
It will show data, including the server uptime. The Status page will show the input and output data
from the server. The Status page will display the following information:

Figure 19.20 – Odoo.sh status

The data displayed in the Status tab is collected from the various monitoring tools used by Odoo.sh.

Managing, Deploying, and Testing with Odoo.sh530

All Odoo.sh options
Odoo.sh provides a few further options under the Settings menu. In this recipe, you will see all of the
important options used to modify the default behavior of certain things on the platform.

Getting ready

We will be using the same Odoo.sh project that we used in previous recipes. You can access all the
Odoo.sh settings from the Settings menu in the top bar. If you are not able to see this menu, that
means you are accessing a shared project and you don’t have admin access.

How to do it...

Open the Settings page from the Settings menu in the top bar. We’ll take a look at the different options
in the following sections.

Project name

You can change the name of the Odoo.sh project from this option. The project name in the input
will be used to generate your production URL. Development builds also use this project name as a
prefix. In this case, the URL of our feature branch will be something like https://serpentcs-
odooshdemov17-feature-branch-260887.dev.odoo.com:

Figure 19.21 – Change the project name

Important note
This option will change the production URL, but you cannot get rid of *.odoo.com. If you
want to run a production branch on a custom domain, you can add your custom domain in
the Settings tab of the production branch. You will also need to add a CNAME entry in your
DNS manager.

Collaborators

You can share the project by adding collaborators. Here, you can search for and add a new collaborator
using their GitHub ID. A collaborator can have either Admin or User access rights. A collaborator
with admin access rights will have full access (to the settings as well). A collaborator with user access
rights, on the other hand, will have restricted access rights. They will be able to see all builds, but they
will not be able to access the backups, logs, shells, or emails of the production or staging branches,
although they will have full access to the development branches:

All Odoo.sh options 531

Figure 19.22 – Add collaborators

Important note
You will need to give these users access to the GitHub repository, too; otherwise, they won’t be
able to create a new repository from the browser.

Public Access

Using this option, you can share builds with your end customer. This can be used for demonstration
or testing purposes. To do so, you need to enable the Allow public access checkbox:

Figure 19.23 – Give public access to builds

Note that the staging branch will have the same password as your production branch. However, in the
development branch, you will have the username and password shown in this table:

Table 19.1

Module installation

In the Settings tab of the development branch, you will see the Module installation option for the
development branches. It provides three options, as shown in the following screenshot:

Managing, Deploying, and Testing with Odoo.sh532

Figure 19.24 – Module installation options

By default, it is set to Install only my modules. This option will install all of your custom modules and
their dependent modules in the new development branches. Only automated test cases are performed
for these modules. The second option is Full installation. This option will install all of the modules
and perform automated test cases for all of those modules. The final option is Install a list of modules.
In this option, you will need to pass a list of comma-separated modules, such as sales, purchases, and
my_hostel. This option will install the given modules and their dependencies.

This setting only applies to development builds. Staging builds duplicate the production build, so they
will have the same modules installed in the production branch and perform test cases for modules
that have an updated version manifest.

Submodules

The Submodules option is used when you are using private modules as submodules. This setting is
only needed for private submodules; public submodules will work fine without any issues. It is not
possible to download private repositories publicly, so you need to give repository access to Odoo.sh.
Follow these steps to add access to the private submodules:

1. Copy the SSH URL of your private submodule repository in the input and click on Add.

2. Copy the displayed public key.

3. Add this public key as a deploy key in your private repository settings in GitHub (similar
settings are also available on Bitbucket and GitLab):

All Odoo.sh options 533

Figure 19.25 – Set the private submodule

You can add multiple submodules, too, and you can remove submodules from here as well.

Database Workers

You can increase the number of workers for the production build. This is useful when you have more
users; usually, a single worker can handle 25 backend users or 5,000 daily website visitors. This formula
is not perfect; it can vary based on usage. This option is not free, and increasing the number of workers
will increase the price of your Odoo.sh subscription:

Figure 19.26 – Set Database Workers

These Database Workers are multithreaded, and each one is able to handle 15 concurrent requests.
It is necessary to have enough workers to serve all incoming requests as they arrive, but increasing
the number of workers does not increase the speed of the requests’ processing time. It is only used to
handle a large number of concurrent users.

Managing, Deploying, and Testing with Odoo.sh534

Staging Branches

Staging branches are used to test a new development with the production database. By default, Odoo.
sh gives you one staging branch. If you are working on large projects with lots of developers, this might
be a bottleneck in the development process, so you can increase the number of Staging Branches at
an extra cost:

Figure 19.27 – Set staging branches

There’s more...

Along with the configuration options, the Settings menu will also display some statistics related to
the platform.

Database size

This section will display the size of your production database. The Odoo.sh platform charges the
database at USD 1/GB/month. This option helps you keep track of your database. The displayed
database size is only for the production database; it does not include the databases of the staging and
development branches:

Figure 19.28 – Database size

Odoo source code revisions

This section will display the GitHub revision number of Odoo’s project. It will display the revision
hash for the Community, Enterprise, and theme projects that are currently being used in the platform.
This source code will automatically be updated every week. This option will help you get the exact
same versions on your local machine. You can also check this from the web shell, through the git
command in the repository.

20
Remote Procedure

Calls in Odoo

The Odoo server supports remote procedure calls (RPCs), which means that you can connect Odoo
instances from external applications. An example is if you want to show the status of a delivery order
in Fan Android application that is written in Java Here, you can fetch the delivery status from Odoo
via RPC. With the Odoo RPC API, you can perform any CRUD operations on a database. Odoo RPC
is not limited to CRUD operations; you can also invoke public methods of any model. Of course, you
will need to have proper access to rights to perform these operations because RPC respects all of the
access rights and record rules you have defined in your database. Consequently, it is very safe to use
because the RPC respects all access rights and record rules. Odoo RPC is not platform-dependent, so
you can use it on any platform, including Odoo.sh, online, or self-hosted platforms. Odoo RPC can
be used with any programming language, so you can integrate Odoo with any external application.

Odoo provides two types of RPC API: XML-RPC and JSON-RPC. In this chapter, we will learn how
to use these RPCs from an external program. Finally, you will learn how to use Odoo RPC through
OCA’s odoorpc library.

In this chapter, we will cover the following recipes:

• Logging in to/connecting Odoo with XML-RPC

• Searching/reading records using XML-RPC

• Creating/updating/deleting records using XML-RPC

• Calling methods using XML-RPC

• Logging in to/connecting Odoo with JSON-RPC

• Fetching/searching records using JSON-RPC

• Creating/updating/deleting records using JSON-RPC

• Calling methods using JSON-RPC

Remote Procedure Calls in Odoo540

How it works...

In order to access the room data, you first have to authenticate. At the beginning of the program, we
did authentication in the same way as we did in the Logging in to/connecting Odoo with XML-RPC
recipe earlier. If you provided valid credentials, the authentication() method will return the
id of the user’s record. We will use this user ID to fetch the room data.

The /xmlrpc/2/object endpoint is used for database operation. In our recipe, we used the
object endpoint to fetch the room data. In contrast to the /xmlrpc/2/common endpoint, this
endpoint does not work without credentials. With this endpoint, you can access the public method of
any model through the execute_kw() method. execute_kw() takes the following arguments:

• Database name

• User ID (we get this from the authenticate() method)

• Password

• Model name, for example, res.partner or hostel.room

• Method name, for example, search, read, or create

• An array of positional arguments

• A dictionary for keyword arguments (optional)

In our example, we want to fetch the room’s information. This can be done through a combination
of search() and read(). Room information is stored in the hostel.room model, so in
execute_kw(), we use hostel.room as the model name and search as the method name.
This will call the ORM’s search method and return record IDs. The only difference here is that the
ORM’s search method returns a record set, while this search method returns a list of IDs.

In execute_kw(), you can pass arguments and keyword arguments for the method provided. The
search() method accepts a domain as a positional argument, so we passed a domain to filter rooms.
The search method has other optional keyword arguments, such as limit, offset, count, and
order, from which we have used the limit parameter to fetch only five records. This will return
the list of room IDs whose names contain the Standard strings.

However, we need to fetch room data from the database. We will use the read method to do this. The
read method accepts a list of IDs and fields to complete the task. At the end of step 3, we used the list
of room IDs that we received from the search method and then used the room IDs to fetch the name
and room_no of the rooms. This will return the list of the dictionary with the room’s information.

Logging in to/connecting Odoo with JSON-RPC 547

You can call any public method of the model, but you cannot call a private method from RPC. A method
name that starts with _ is called a private method, such as _get_share_url() and _get_data().

It is safe to use these methods, as they go through the ORM and follow all security rules. If the method
is accessing unauthorized records, it will generate errors.

In our example, we created a room with a state of draft. Then, we made one more RPC call to
invoke the make_available method, which will change the room’s state to available. Finally,
we made one more RPC call to check the state of the room. This will show that the room’s state has
changed to Available, as indicated in Figure 20.4.

Methods that do not return anything internally return None by default. Such methods cannot be
used from RPC. Consequently, if you want to use your method from RPC, at least add the return
True statement.

There’s more...

If an exception is generated from a method, all of the operations performed in the transaction will be
automatically rolled back to the initial state. This is only applicable to a single transaction (a single RPC
call). For example, imagine you are making two RPC calls to the server, and an exception is generated
during the second call. This will roll back the operation that was carried out during the second RPC
call. The operation performed through the first RPC call won’t be rolled back. Consequently, you want
to perform a complex operation through RPC. It is recommended that this be performed in a single
RPC call by creating a method in the model.

Logging in to/connecting Odoo with JSON-RPC
Odoo provides one more type of RPC API: JSON-RPC. As its name suggests, JSON-RPC works in the
JSON format and uses the jsonrpc 2.0 specification. In this recipe, we will see how you can log in
with JSON-RPC. The Odoo web client itself uses JSON-RPC to fetch data from the server.

Getting ready

In this recipe, we will perform user authentication through JSON-RPC to check whether the given
credentials are valid. Make sure you have installed the my_hostel module and that the server is
running on http://localhost:8017.

How to do it...

Perform the following steps to perform user authentication through RPC:

1. Add the jsonrpc_authenticate.py file. You can place this file anywhere you want
because the RPC program will work independently.

Remote Procedure Calls in Odoo552

Rooms data: {'jsonrpc': '2.0', 'id': 357582271, 'result': [{'id':
1, 'name': '8th Standard', 'room_no': '1'}, {'id': 2, 'name': '9th
Standard', 'room_no': '2'}, {'id': 3, 'name': '10th Standard', 'room_
no': '3'}, {'id': 4, 'name': '11th Standard', 'room_no': '4'}, {'id':
5, 'name': '12th Standard', 'room_no': '5'}]}

The output shown in the preceding screenshot is based on data in my database. The data in your Odoo
instance may be different data, so the output will also be different.

How it works...

In the Logging in to/connecting Odoo with JSON-RPC recipe, we saw that you can validate username
and password. If the login details are correct, the RPC call will return user_id. You can then
use this user_id to fetch the model’s data. Like XML-RPC, we need to use the search and read
combination to fetch the data from the model. To fetch the data, we use object as a service and
execute_kw() as the method. execute_kw() is the same method that we used in XML-RPC
for data, so it accepts the same argument as follows:

• Database name

• User ID (we get this from the authenticate() method)

• Password

• Model name, for example, res.partner or hostel.room

• Method name, for example, search, read, or create

• An array of positional arguments (args)

• A dictionary for keyword arguments (optional) (kwargs)

In our example, we called the search method first. The execute_kw() method usually takes
mandatory arguments as positional arguments and optional arguments as keyword arguments. In
the search method, domain is a mandatory argument, so we passed it in the list and passed the
optional argument limit as the keyword argument (dictionary). You will get a response in JSON
format, and in this recipe, the response of the search() method RPC will have the room’s IDs in
the result key.

In step 2, we made an RPC call using the read method. To read the room’s information, we passed
two positional arguments: the list of room IDs and the list of fields to fetch. This RPC call will return
the room information in JSON format, and you can access it in using the result key.

Important note
Instead of execute_kw(), you can use execute as the method. This does not support
keyword arguments, so you need to pass all of the intermediate arguments if you want to pass
some optional arguments.

Remote Procedure Calls in Odoo562

How to do it...

Perform the following steps to generate an API key for RPC:

1. Open user preferences and open the Account Security tab.

2. Click on the New API Key button:

Figure 20.1 – Generating a new API key

3. It will open a popup, as in the following screenshot. Enter the API key name and click on the
Generate key button:

Figure 20.2 – Naming your key

Generating API keys 563

4. This will generate the API key and show it in a new popup. Note down the API key because
you will need this again:

Figure 20.3 – Noting the generated API key

Once the API key is generated, you can start using the API key for RPC in the same way as the
normal password.

How it works…

Using API keys is straightforward. However, there are a few things that you need to take care of. The
API keys are generated per user, and if you want to utilize RPC for multiple users, you will need to
generate an API key for each user. Additionally, the API key for a user will have the same access rights
as the user would have, so if someone gains access to the key, they can perform all the operations that
the user can. So, you need to keep the API key secret.

Important note
When you generate the API key, it is displayed only once. You need to note down the key. If
you lose it, there is no way to get it back. In such cases, you would need to delete the API key
and generate a new one.

Using the API key is very simple. During RPC calls, you just need to use the API key instead of the
user password. You will be able to call RPC even if 2FA is activated.

21
Performance Optimization

With the help of the Odoo framework, you can develop large and complex applications. Good
performance is key to the success of any project. In this chapter, we will explore the patterns and tools
you need to optimize performance. You will also learn about the debugging techniques used to find
the root cause of a performance issue.

In this chapter, we will cover the following recipes:

• The prefetching pattern for recordsets

• The in-memory cache – ormcache

• Generating differently sized images

• Accessing grouped data

• Creating or writing multiple records

• Accessing records through database queries

• Profiling Python code

The prefetching pattern for recordsets
When you access data from a recordset, it makes a query in the database. If you have a recordset
with multiple records, fetching records on it can make a system slow because of the multiple SQL
queries. In this recipe, we will explore how you can use the prefetching pattern to solve this issue. By
following the prefetching pattern, you can reduce the number of queries needed, which will improve
performance and make your system faster.

Performance Optimization574

The previous code snippet is optimized, as it obtains the sales order count directly via SQL’s GROUP
BY feature.

How it works...

The read_group() method internally uses the GROUP BY feature of SQL. This makes the
read_group method faster, even if you have large datasets. Internally, the Odoo web client uses this
method in the charts and the grouped tree view. You can tweak the behavior of the read_group
method by using different arguments.

Let’s explore the signature of the read_group method:

def read_group(self, domain, fields, groupby, offset=0, limit=None,
orderby=False, lazy=True):

The different parameters available for the read_group method are as follows:

• domain: This is used to filter records. This will be the search criteria for the read_group method.

• fields: This is a list of the fields to fetch with the grouping. Note that the fields mentioned
here should be in the groupby parameter, unless you use some aggregate functions. The
read_group method supports the SQL aggregate functions. Let›s say you want to get the
average order amount per customer. If so, you can use read_group as follows:

self.env['sale.order'].read_group([], ['partner_id', 'amount_
total:avg'], ['partner_id'])

If you want to access the same field twice but with a different aggregate function, the syntax
is a little different. You need to pass the field name as alias:agg(field_name). This
example will give you the total and average number of orders per customer:

self.env['sale.order'].read_group([], ['partner_id',
'total:sum(amount_total)', 'avg_total:avg(amount_total)'],
['partner_id'])

• groupby: This parameter will be a list of fields by which the records are grouped. It lets
you group records based on multiple fields. To do this, you will need to pass a list of fields.
For example, if you want to group the sales orders by customer and order state, you can pass
['partner_id ', 'state'] in this parameter.

• offset: This parameter is used for pagination. If you want to skip a few records, you can
use this parameter.

• limit: This parameter is used for pagination; it indicates the maximum number of records
to fetch.

• lazy: This parameter accepts Boolean values. By default, its value is True. If this parameter
is True, the results are grouped only by the first field in the groupby parameter. You will

Performance Optimization580

Note
Note that using commit() can be dangerous because it can put records in an inconsistent
state. An error in the ORM can cause incomplete rollbacks, so only use commit() if you are
completely sure of what you›re doing.

If you use the commit() method, then there›s no need to use flush() afterward. The commit()
method flushes the environment internally.

Profiling
Sometimes, you will be unable to pinpoint the cause of an issue. This is especially true of performance
issues. Odoo provides some built-in profiling tools that help you find the real cause of an issue.

Profiling is about analyzing the execution of a program and measuring aggregated data. These data
can be the elapsed time for each function, the executed SQL queries, and so on.

While profiling does not improve the performance of a program by itself, it can prove very helpful
in finding performance issues and identifying which part of the program is responsible for them.

Code profiling in Odoo can help you identify performance and optimize your code. It is a technique used
to analyze the code execution time, complexity of the program, and memory usage of an application.

By using profiling techniques in Odoo, you can improve the overall performance and user experience
of your application, making it faster and more efficient.

Enabling the profiler

The profiler can either be enabled from the user interface, which is the easiest way to do so but only
allows you to profile web requests, or from Python code:

1. Enable developer mode.

2. The profiler must be enabled globally on the database. This can be done in two ways:

 � Open the developer mode tools, and then toggle the Enable profiling button. A wizard
suggests a set of expiry times for the profiling. Click on Enable profiling to enable the
profiler globally.

Profiling 581

Figure 21.1 – Enabling Profiling

Figure 21.2 – Disabling profiling

 � Go to Settings | General Settings | Performance and set the desired time for the field
Enable profiling field.

Performance Optimization582

Analyzing the results

To browse the profiling results, make sure that the profiler is enabled globally on the database, then
open the developer mode tools, and click on the button in the top-right corner of the profiling section.
A list view of the ir.profile records grouped by profiling session will open.

Each record has a clickable link that opens the speedscope results in a new tab.

Speedscope falls out of the scope of this documentation, but there are a lot of tools to try out – search,
highlight of similar frames, zoom on frame, timeline, left heavy, sandwich view, and so on.

Profiling 583

Depending on the profiling options that were activated, Odoo generates different view modes that
you can access from the top menu.

• Combined: The Combined view displays all of the SQL queries and traces that have been
integrated together.

• Combined no context: The Combined no context view produces the same results but disregards
the stored execution context, performance/profiling/enable>.

• sql (no gap): The sql (no gap) view displays all SQL queries as if they were done sequentially,
without any Python logic. This is solely beneficial for SQL optimization.

• sql (density): Only the SQL queries are displayed in the sql (no density) view, with space
between them. This can help you discover areas where numerous tiny queries could be batch-
processed and determine whether the issue is with the Python or SQL code.

• frames: Only the periodic collector’s results are displayed in the frames view.

Performance Optimization586

Performance pitfalls

• Be careful with randomness. Multiple executions may lead to different results – for example ,
a garbage collector being triggered during execution.

• Be careful with blocking calls. In some cases, an external c_call may take some time before
releasing the GIL, thus leading to unexpected long frames with the Periodic collector. This
should be detected by the profiler and given a warning. It is possible to trigger the profiler
manually before such calls if needed.

• Pay attention to the cache. Profiling before the view/assets/… are in a cache can lead to
different results.

• Be aware of the profiler’s overhead. The SQL collector’s overhead can be important when many
small queries are executed. Profiling is practical to spot a problem, but you may want to disable
the profiler to measure a code change’s real impact.

• Profiling results can be memory-intensive. In some cases (e.g., profiling an install or a long
request), you can reach the memory limit, especially when rendering the speedscope results,
which can lead to an HTTP 500 error. In this case, you may need to start the server with a
higher memory limit – --limit-memory-hard $((8*1024**3)).

22
Point of Sale

Point of Sale is a fully integrated application that allows you to sell products (online or offline) with any
device. It also automatically registers product moves in your stock, gives you real-time statistics, and
consolidations across all shops. In this chapter, we will see how to modify the Point of Sale application.

In this chapter, we will cover the following topics:

• Adding custom JavaScript/SCSS files

• Adding an action button to the keyboard

• Making RPC calls

• Modifying the Point of Sale screen UI

• Modifying existing business logic

• Modifying customer

Note
The Point of Sale application is mostly written in JavaScript. This chapter is written assuming
that you have a basic knowledge of JavaScript. This chapter also uses the OWL framework, so if
you are unaware of these JavaScript terms, check out Chapter 16, The Odoo Web Library (OWL).

Throughout this chapter, we will be using an add-on module called point_of_sale_customization.
This point_of_sale_customization module will have a dependency on point_of_sale,
as we are going to do customization in the Point of Sale application. To get started with this point
quickly, we have prepared an initial point_of_sale_customization module, and you can
grab it from the Chapter22/00_initial_module/point_of_sale_customization
directory in the GitHub repository of this book.

Adding an action button to the keyboard 593

Figure 22.4 – The discount button

After clicking this, the discount will be applied to the selected order line.

How it works..

In Odoo v17, code based on the Odoo Point of Sale application is completely rewritten using the OWL
framework. You can learn more about the OWL framework in Chapter 16, The Odoo Web Library (OWL).

To create the action button in the Point of Sale application, you will need to extend Component.
Now, Component is defined in @odoo/owl namespace, so to use it in your code, you will need
to import it.

Modifying customer receipts 603

Note that when you set the product price below the actual cost, a warning will be displayed, and it
will continue to pop up every time you take an action, such as when you change the quantity for the
product order.

How it works...

The Point of Sale component register provides an extend method to make changes to an existing
function. Internally, it monkey-patches the actual component definition.

In our example, we modified the _setValue() method. The _setValue() method of
ProductScreen is called whenever the user makes a change to the order line. We wanted to show
a warning if the user sets the product price below the product cost. So, we defined a new _setValue()
method and called the super method; this will make sure that whatever actions the user performs are
applied. After the call to the super method, we wrote our logic, which checks whether the product
sale price is higher than the actual cost of the product. If not, we then show a warning to the user.

Note
Using super can break things if it’s not used carefully. If the method is inherited from several
files, you must call the super method; otherwise, it will skip the logic in the subsequent
inheritance. This sometimes leads to a broken internal data state.

We placed our business logic after the default implementation (super) is called. If you want to write
business logic before the default implementation, you can do so by moving the super call to the
end of the function.

Modifying customer receipts
When you customize a Point of Sale application, a common request you get from customers is to
modify customer receipts. In this recipe, you will learn how to modify customer receipts.

Getting ready

In this recipe, we will use the point_of_sale_customization module created in the Modifying
existing business logic recipe. We will add one line to the Point of Sale receipt to show how much money
the customer saved in the order.

23
Managing Emails in Odoo

Email integration is the most prominent feature of Odoo. You can send and receive emails directly
from the Odoo user interface. You can even manage email threads on business documents, such as
leads, sales orders, and projects. In this chapter, we will explore a few important ways to deal with
emails in Odoo.

Here, we’ll cover the following recipes:

• Configuring incoming and outgoing email servers

• Managing chatter on documents

• Managing activities on documents

• Sending emails using the Jinja template

• Sending emails using the QWeb template

• Managing the email alias

• Logging user changes in a chatter

• Sending periodic digest emails

Technical requirements
All the code used in this chapter can be downloaded from https://github.com/
PacktPublishing/Odoo-17-Development-Cookbook-Fifth-Edition/tree/
main/Chapter23.

Configuring incoming and outgoing email servers
Before you start sending and receiving emails in Odoo, you will need to configure the incoming and
outgoing email servers. In this recipe, you will learn how to configure email servers in Odoo.

Managing Emails in Odoo608

Getting ready

There is no development needed for this recipe, but you will require email server information, such as
the server URL, port, server type, username, and password. We will use this information to configure
the email servers.

Note
If you are using Odoo Online or Odoo.sh, you do not need to configure the email servers.
You can send and receive emails without any complex configurations on those platforms. This
recipe is for on-premises Odoo instances.

How to do it...

Configuring incoming and outgoing email servers involves a few steps that are common to the processes
for incoming and outgoing servers and a few steps that are unique to each kind of server. So, first, we
will see the common configuration steps, and then we will configure the incoming and outgoing email
servers individually. The following are the steps required for both incoming and outgoing email servers:

1. Open the General Settings form menu, at Settings | General Settings.

2. Go to the Discuss section and inside Alias Domain. This will display the following options:

Figure 23.1 – Setting an alias domain

3. In the Alias Domain field, enter the domain name on which your email server is running.
Then, save the configuration.

Configuring the incoming email server

Perform the following steps to configure the incoming email server:

1. Open General Settings and click on the Incoming Email Servers link under Technical | Email.
This will redirect you to a list view of incoming email servers.

Configuring incoming and outgoing email servers 609

2. Click on the Create button, which will open the following form view. Enter the details of your
incoming email server (see the How it works… section for an explanation of each field):

Figure 23.2 – Configuring the incoming email server

3. Click on the Test & Confirm button to verify your configuration. It will show an error message
if you have wrongly configured the incoming email server.

Configuring the outgoing email server

Follow these steps to configure the outgoing email server:

1. Open General Settings and enable the Custom Email Servers option, then click on the
Outgoing Email Servers link. This will redirect you to the list view of outgoing email servers.

2. Click on Create, which will open the following form view. Enter the details of your outgoing
email server (see the How it works… section for an explanation of each field):

Managing Emails in Odoo610

Figure 23.3 – Configuring the outgoing email server

3. Click on Test Connection at the bottom of the screen to verify your configuration. It will show
an error message if you have wrongly configured the outgoing email server.

The outgoing email server will display the error dialog even if you have configured it properly. Look
for a Connection Test Successful! message in the error dialog body. It means your outgoing server
is configured correctly.

How it works...

The steps given in this recipe are self-explanatory and do not require further explanation. But the
outgoing email and incoming email records have several fields, so let’s see their purpose.

Here is a list of fields used to configure the incoming email server:

• Name: The name of the server, which helps you identify a specific incoming email server when
you have configured multiple incoming email servers.

• Server Type: Here, you need to choose from three options: POP Server, IMAP Server, and
Local Server. The value of this field will be based on your email service provider.

• Server Name: The domain of the server on which the service is running.

• Port: The number of the port on which the server is running.

• SSL/TLS: Check this field if you are using SSL/TLS encryption.

• Username: The email address for which you are fetching emails.

• Password: The password for the email address provided.

Managing chatter on documents 611

• Active: This field is used to enable or disable the incoming email server.

• Keep Attachment: Turn off this option if you do not want to manage attachments from
incoming emails.

• Keep Original: Turn on this option if you want to keep the original email along with the
preceding one.

The following is a list of fields used for configuring the outgoing email server:

• Name: The name of the server, which helps you identify a specific incoming email server when
you have configured multiple incoming email servers.

• Priority: This field is used to define the priority of the outgoing email server. Lower numbers
get higher priority, so email servers with a lower priority number will be used most.

• SMTP Server: The domain of the server on which the service is running.

• SMTP Port: The number of the port on which the server is running.

• Connection Encryption: The type of security used to send emails.

• Username: The email account used for sending emails.

• Password: The password for the email account provided.

• Active: This field is used to enable or disable the outgoing email server.

There’s more...

By default, incoming emails are fetched every 5 minutes. If you want to change this interval, follow
these steps:

1. Activate developer mode.

2. Open Scheduled Actions at Settings | Technical | Automation | Scheduled Actions.

3. Search for and open the scheduled action named Mail: Fetchmail Service.

4. Change the interval using the field labeled Execute Every.

Managing chatter on documents
In this recipe, you will learn how to manage chatter on your documents and add a communication
thread to a record.

Getting ready

For this recipe, we will reuse the my_hostel module from Chapter 8, Advanced Server-Side
Development Techniques. You can grab an initial copy of the module from the Chapter23/ 00_
initial_module directory of the GitHub repository for this hostel room. In this recipe, we will
add chatter to the hostel.student model.

Sending emails using the Jinja template 619

• body_html: This field will contain the body of the email template. It is a Jinja template, so you
can use variables, loops, conditions, and so on. If you want to learn more about Jinja templates,
go to http://jinja.pocoo.org/docs/2.10/. Usually, we wrap the content in the
CDATA tag so that the content in the body is considered as character data and not as markup.

• auto_delete: This is a Boolean field that deletes an email once the email is sent. The default
value of this field is False.

• lang: This field is used to translate the email template into another language.

• scheduled_date: This field is used to schedule emails in the future.

Information
You can use ${} in the email_form, email_to, email_cc, subject, scheduled_
date, and lang fields. This helps you to set values dynamically. Take a look at step 1 in our
recipe—we used {{ (object.email) }} to set the email_to field dynamically.

If you look closely at the content of the body_html field, you will notice we used <t t-out="object.
name">. Here, the object is the recordset of the hostel.student model. During the rendering,<t
t-out="object.hostel_id.name"></t> will be replaced with the hostel name. As well as
object, some other helper functions and variables are passed in the rendering context. Here is a
list of helpers passed to the renderer context:

• object: This variable will contain the recordset of the model, which is set in the template by
the model_id field

• format_date: This is a reference to the method used to format date-time objects

• format_datetime: This is a reference to the method used to convert the UTC date and
time into the date and time for another time zone

• format_amount: This is a reference to the method used to convert float into string
with the currency symbol

• format_duration: This method is used to convert float into time—for instance, to
convert 1.5 to 01:30

• user: This will be the recordset of the current user

• ctx: This will contain the dictionary of the environment context

Note
If you want to see the list of templates, activate developer mode, and open the Settings |
Technical | Email | Templates menu. The form view of the template also provides a button to
preview the rendered template.

Sending emails using the QWeb template 623

• To manage the date format, time zone, and amount with currency symbols, in the Jinja template,
you have to use the format_date, format_tz, and format_amount functions, while
in QWeb templates, it is managed automatically.

• It is not possible to modify an existing template for other modules in Jinja, whereas in QWeb
templates, you can modify the email template through inheritance. If you want to learn more
about QWeb inheritance, refer to the Creating or modifying templates recipe in Chapter 14,
CMS Website Development.

• You can select and use a Jinja template directly from the message composer. In the following
screenshot, the drop-down menu in the bottom-right corner is used to select a Jinja template:

Figure 23.8 – Template selection option

• Using QWeb, selecting a template directly from the message composer is not an option.

There’s more...

All methods (message_post and message_post_with_source) respect the user’s preference.
If the user changes the notification-management option from the user preferences, the user will not
receive emails; instead, they will receive notifications in Odoo’s UI. This is the same for customers; if
a customer opts out of emails, they will not receive any updates through email.

Sending periodic digest emails 631

In step 2, we added a field to the digest form view. This field is used to enable/disable digest emails.
When you enable it, you will start receiving digest emails:

Figure 23.13 – Digest email for room rent records

Enable developer mode, then open Settings | Technical | Emails | Digest Emails. Here, you can
configure the recipients of digest emails and set the periodicity for digest emails. You can also enable/
disable digest emails from here.

24
Managing the IoT Box

Odoo provides support for the Internet of Things (IoT). The IoT is a network of devices/sensors
that exchange data over the internet. By connecting such devices with a system, you can use them.
For instance, by connecting a printer with Odoo, you can send PDF reports directly to the printer.
Odoo uses a piece of hardware called the IoT Box, which is used to connect devices such as printers,
calipers, payment devices, footswitches, and more. In this chapter, you will learn how to set up and
configure the IoT Box. Here, we’ll cover the following recipes:

• Flashing the IoT Box image for Raspberry Pi

• Connecting the IoT Box with a network

• Adding the IoT Box to Odoo

• Loading drivers and listing connected devices

• Taking input from devices

• Accessing the IoT Box through SSH

• Configuring a point of sale (POS)

• Sending PDF reports directly to a printer

Note that the goal of this chapter is to install and configure the IoT Box. Developing hardware drivers
is outside the scope of this book. If you want to learn about the IoT Box in more depth, explore the
iot module in the Enterprise Edition.

Technical requirements
The IoT Box is a Raspberry Pi-based device. The recipes in this chapter are based on the Raspberry
Pi 3 Model B+, available at https://www.raspberrypi.org/products/raspberry-
pi-3-model-b-plus/. The IoT Box is part of the Enterprise Edition, so you will need to use the
Enterprise Edition to follow the recipes in this chapter.

Managing the IoT Box634

All code used in this chapter can be downloaded from the following GitHub repository: https://
github.com/PacktPublishing/Odoo-17-Development-Cookbook-Fifth-Edition/
tree/main/Chapter24.

Flashing the IoT Box image for Raspberry Pi
In this recipe, you will learn how to flash a microSD card with an image of the IoT Box. Note that
this recipe is only for those who have purchased the blank Raspberry Pi. If you have purchased the
official IoT Box from Odoo, you can skip this recipe as it is preloaded with the IoT Box image.

Getting ready

Raspberry Pi 3 Model B+ uses a microSD card, so we have used a microSD card for this recipe. You
will need to connect a microSD card to your computer.

How to do it…

Perform the following steps to install an IoT Box image onto your SD card:

1. Insert a microSD card into your computer (use an adapter if your computer doesn’t have a
dedicated slot).

2. Download the IoT Box image from Odoo’s nightly builds. The image is available at https://
nightly.odoo.com/master/iotbox/.

3. Download and install balenaEtcher on your computer. You can download this from https://
www.balena.io/etcher/.

4. Open balenaEtcher, select the IoT Box image (we are using version 23.09 of the IoT Box image),
and choose to flash your microSD card. You’ll see the following screen:

Flashing the IoT Box image for Raspberry Pi 635

Figure 24.1 – Flashing the SD card with the IoT Box image

5. Click on the Flash! button and wait until the process completes.

6. Remove the microSD card and place it in the Raspberry Pi.

After these steps, your microSD card should be loaded with the IoT Box image and ready to be used
in the IoT Box.

How it works…

In this recipe, we have installed the IoT Box image on a microSD card. In the second step, we downloaded
the IoT Box image from the Odoo nightly builds. On the nightly page, you can find different images
for the IoT Box. You need to choose the latest image from the Odoo nightly builds. When writing this
book, we used the latest image, which was iotboxv23_11.zip. The Odoo IoT Box image is based
on the Raspbian Stretch Lite OS, and the image is loaded with the libraries and modules required to
integrate the IoT Box with the Odoo instance.

In step 3, we downloaded the balenaEtcher utility tool to flash the microSD card.

Note
In this recipe, we used balenaEtcher to flash the microSD card, but you can use any other tools
to flash the microSD card.

In step 4, we flashed the microSD card with the IoT Box image. Note that this process can take several
minutes. On completion of the process, the microSD card will be ready to be used.

Managing the IoT Box636

Perform the following steps if you want to verify whether the image was flashed successfully:

1. Mount the microSD card into Raspberry Pi.

2. Connect it to the power supply and attach the external display through an HDMI cable (in practical
usage, an external display is not compulsory; we have used it here just for verification purposes).

3. The OS will boot up and show the following page:

Figure 24.2 – The IoT Box screen

If you are not using a display, you can just connect the IoT Box to a power supply, and after some
time, you will see the Wi-Fi network of the IoT Box.

There’s more...

In previous versions of Odoo, the PosBox was used in POS applications. The IoT Box supports all the
features of the PosBox, so if you are using the Community Edition of Odoo and you want to integrate
devices, you can use the same IoT Box image to connect Odoo instances with different devices. See
the Configuring a POS recipe for more information.

Connecting the IoT Box with a network
The IoT Box communicates with an Odoo instance through the network. Connecting the IoT Box
is a crucial step, and if you make a mistake here, you might encounter errors when connecting the
IoT Box with Odoo.

Connecting the IoT Box with a network 637

Getting ready

Mount the microSD card with the IoT Box image into the Raspberry Pi and then connect the Raspberry
Pi to the power supply.

How to do it…

Raspberry Pi 3 Model B+ supports two types of network connection—Ethernet and Wi-Fi.

Connecting the IoT Box through Ethernet is simple; you just need to connect your IoT Box with the
RJ45 Ethernet cable, and the IoT Box is then ready to be used. Connecting the IoT Box through
Wi-Fi is complicated as you might not have a display attached to it. Perform the following steps to
connect the IoT Box through Wi-Fi:

1. Connect the IoT Box to the power supply (if the Ethernet cable is plugged into the IoT Box,
remove it and restart the IoT Box).

2. Open your computer and connect to the Wi-Fi network, named IoTBox, as shown in the
following screenshot (no password is needed):

Figure 24.3 – IoT Box Wi-Fi network

3. After connecting to the Wi-Fi network, you’ll see a popup with the IoT Box home page, as
shown in the following screenshot (if this does not work, open the IP address of the box in
the browser):

Managing the IoT Box638

Figure 24.4 – Connecting to the IoT Box

4. Set IoT Box Name and keep Server token empty, then click on Next. This will redirect you to
a page where you can see a list of Wi-Fi networks:

Figure 24.5 – Connecting to Wi-Fi

Connecting the IoT Box with a network 639

Note
You can use a server token if you are using the Enterprise Edition and you want to connect the
IoT Box with Odoo right away. You can get a server token from your Odoo instance; refer to
the next recipe to learn more about it.

5. Select the Wi-Fi network that you want to connect to and fill in the Password field. After
doing this, click on the Connect button. If you entered the correct information, you will be
redirected to the final page:

Figure 24.6 – Confirmation page

After performing these steps, your IoT Box is connected to the network and ready to be integrated
with the Odoo instance.

How it works...

Connecting the Odoo instance to the IoT Box through Ethernet is simple; just connect your IoT Box
with the RJ45 Ethernet cable, and the IoT Box is ready to be used. It’s different when you want to
connect the IoT Box with Wi-Fi; this is difficult because the IoT Box doesn’t have a display or GUI.
You do not have an interface to enter your Wi-Fi network password. Consequently, the solution to
this problem is to disconnect your IoT Box from the Ethernet cable (if it is connected) and restart it.
In such cases, the IoT Box will create its own Wi-Fi hotspot, named IoTBox or similar, as shown in
step 2. You need to connect the Wi-Fi with the name IoTBox; luckily, it does not require a password.
Once you connect to the IoTBox Wi-Fi, you’ll get a popup, as shown in step 3. Here, you can name
your IoT Box something like Assembly-line IoT Box. Keep the server token empty for now;
we will learn more about it in the Adding the IoT Box to Odoo recipe. Then, click on the Next button.

Managing the IoT Box640

Upon clicking the Next button, you will be shown a list of Wi-Fi networks, as shown in step 4. Here,
you can connect the IoT Box to your Wi-Fi network. Make sure you choose the right network. You
need to connect the IoT Box with the same Wi-Fi network as the computer on which the Odoo instance
is going to be used. The IoT Box and the Odoo instance communicate within a local area network
(LAN). This means that if both are connected to different networks, they cannot communicate, and
so IoT will not work.

After choosing the right Wi-Fi network, click on Connect. Then, the IoT Box will turn off its hotspot
and reconnect to your configured Wi-Fi network. That’s it—the IoT Box is ready to be used.

Adding the IoT Box to Odoo
Our IoT Box is connected to the local network and ready to be used with Odoo. In this recipe, we will
connect the IoT Box with the Odoo instance.

Getting ready

Make sure the IoT Box is on and that you have connected the IoT Box to the same Wi-Fi network as
the computer with the Odoo instance.

There are a few things you need to take care of; otherwise, the IoT Box will not be added to Odoo:

• If you are testing the IoT Box in a local instance, you will need to use
http://192.168.*.*:8069 (your local IP) instead of http://localhost:8069.
If you use localhost, the IoT Box will not be added to your Odoo instance.

• You need to connect the IoT Box with the same Wi-Fi/Ethernet network as the computer on
which the Odoo instance is being used. Otherwise, the IoT Box will not be added to your
Odoo instance.

• If your Odoo instance is running with multiple databases, IoT Box will not auto-connect with
the Odoo instance. Use the --db-filter option to avoid this issue.

How to do it…

In order to connect the IoT Box with Odoo, first you will need to install the iot module on your
Odoo instance:

1. To do so, go to the Apps menu and search for the Internet of Things module. The module will
look like this. Activate the module, and we are good to go:

Adding the IoT Box to Odoo 641

Figure 24.7 – Installing the iot module

2. After installing the iot module, you can connect your instance with the IoT Box. Then, connect
your IoT Box manually with the Odoo instance by clicking on the IoT menu.

3. Click on the Connect button on the control panel. This will show the following popup. Copy
the Token value:

Figure 24.8 – Dialog to connect the IoT Box with Odoo

4. Open the IP of the IoT Box with port 8069. This will display the home page of the IoT Box.
Click on the configure button in the Name section:

Managing the IoT Box642

Figure 24.9 – The IoT Box home page

5. Set the IoT Box Name setting and paste in the server token. Then, click on the Connect button.
This will start configuring the IoT Box. Wait for the process to complete:

Figure 24.10 – The IoT Box home page

Adding the IoT Box to Odoo 643

6. Check the IoT menu in your Odoo instance. You will find a new IoT Box:

Figure 24.11 – Successfully connected IoT Box

How it works…

Connecting the IoT Box with Odoo is important. This way, Odoo will know the IP of the IoT Box.
The IP will be used by Odoo to communicate with devices connected to that device. This will also
make sure, in the case of multiple IoT Boxes, that Odoo communicates with the right one. The rest
is straightforward.

If you want to add an IoT Box to an Odoo instance during Wi-Fi configuration, that can be done. In
the Connecting the IoT Box with a network recipe, we kept the Server token field empty. You just need
to add the server token in this step:

Figure 24.12 – Adding the server token during Wi-Fi configuration

Managing the IoT Box644

Note
Avoid using the DHCP network when using the IoT Box. This is because the IoT Box network
configuration is added based on the IP address. If you use the DHCP network, then the IP
address is assigned dynamically. So, there is a chance that your IoT Box will stop responding
due to the new IP address. To avoid this issue, you can map the MAC address of the IoT Box
to the fixed IP address.

Connecting an IoT Box with a pairing code

There is one more alternative way to connect an IoT Box, which is through a pairing code. The
pairing code can be found on the POS display page of the IoT Box. There are two ways to open a POS
client display. The first is by connecting the IoT Box with an external display. When you start your
IoT Box with a display connected, it will open the POS client display by default. The second way is to
open the POS client via the IoT Box IP. The URL for the POS client display is as follows: <IoTBOX
IP>:8069/point_of_sale/display. Once you open the POS client display, you will be able
to see the pairing code as follows:

Figure 24.13 – The pairing code for the IoT Box

Loading drivers and listing connected devices 645

Then, you just need to use the pairing code in the IoT Box connection dialog in your Odoo instance.

Note
The pairing code will not be displayed if you are not connected to the internet.

In the preceding screenshot, we have seen how you can get the pairing code for the POS client display.
But if you have an Ethernet connection and a printer, you can get the pairing code without a display.
You just need to connect the IoT Box with the Ethernet and the printer. Once the IoT Box is booted,
it will print a receipt with the pairing code. Then, you just need to use the pairing code in the IoT Box
connection dialog in your Odoo instance.

There’s more…

If you want to connect an existing IoT Box with any other Odoo instance, you will need to clear the
configuration. You can clear the IoT Box configuration with the Clear button on the Odoo server
configuration page of the IoT Box:

Figure 24.14 – Clearing the IoT Box configuration

Loading drivers and listing connected devices
The IoT Box is not just limited to the Enterprise Edition. You can use it like the PosBox in the
Community Edition. The device’s integration is part of the Enterprise Edition, so the IoT Box image
does not come with device drivers; you need to load them manually. Usually, if you connect the IoT
Box with an Enterprise Odoo instance, the IoT Box loads the device driver interfaces automatically.

Managing the IoT Box646

But sometimes, you might have custom drivers or drivers that are not loaded correctly. In that case,
you can manually load the drivers. In this recipe, we will see how you can load drivers and get a list
of connected devices.

Getting ready

Make sure the IoT Box is on and that you have connected it to the same Wi-Fi network as the computer
with the Odoo instance.

How to do it…

Perform the following steps to load device drivers into the IoT Box:

1. Open the IoT Box home page and click on the handlers list button at the bottom:

Figure 24.15 – handlers list button

Loading drivers and listing connected devices 647

2. The handlers list button will redirect you to the Handlers list page, where you will find the
Load handlers button. Click on the button to load the drivers:

Figure 24.16 – Drivers list

Managing the IoT Box648

3. Go back to the IoT Box home page. Here, you will see a list of connected devices:

Figure 24.17 – Connected devices

After performing these steps, the IoT Box will be ready with the devices you specified, and you can
start using the devices in your applications.

How it works…

You can load the drivers from the home page of the IoT Box. You can do this using the Load handlers
button at the bottom. Note that this will only work if your IoT Box is connected with the Odoo instance
using the Enterprise Edition. After loading the drivers, you will be able to see a list of devices on the
IoT Box home page. You can also see a list of connected devices in the Odoo instance through the IoT
| Devices menu. In this menu, you will see a list of connected devices for each IoT Box:

Taking input from devices 649

Figure 24.18 – Connected devices list

Right now, the IoT Box supports a few hardware devices, such as cameras, footswitches, printers, and
calipers. A list of devices that are recommended by Odoo can be found here: https://www.odoo.
com/page/iot-hardware. If your device is not supported, you can pay for driver development.

Taking input from devices
The IoT Box only supports limited devices. Right now, these hardware devices are integrated with the
manufacturing application. But if you want, you can integrate supported devices with your module.
In this recipe, we will capture a picture from a camera through our IoT Box.

Getting ready

We will be using the my_hostel module from the Logging user changes in a chatter recipe of
Chapter 23, Managing Emails in Odoo. In this recipe, we will add a new field to capture and store
images when a borrower returns a book. Make sure the IoT Box is on and that you have connected a
supported camera device with it.

Taking input from devices 651

Figure 24.19 – Capturing an image via IoT

Note that the button will not capture images if the webcam is not connected to the IoT Box or drivers
are not loaded in the IoT Box.

How it works…

In step 1, we added a dependency to the quality_iot module in the manifest file. The quality_iot
module is part of the Enterprise Edition and contains a widget that allows you to request an image
from a camera through the IoT Box. This will install stock modules, but for the sake of simplicity,
we will use quality_iot as a dependency. If you do not want to use this dependency, you can
create your own field widget. Refer to the Creating custom widgets recipe in Chapter 15, Web Client
Development, to learn more about widgets.

In step 2, we added fields required to capture an image from the camera. To capture the image, we need
two things: the device identifier and the IP address of the IoT Box. We want to give the user the option
to select the camera, so we added a device_id field. The user will choose a camera to capture the
image, and based on the selected camera device, we extracted IP and device identifier information
from related fields. Based on these fields, Odoo will know where to capture the image, if you have
multiple IoT Boxes. We have also added a binary field, picture, to save the image.

Managing the IoT Box654

Figure 24.20 – Debugging with a ngrok token

Once you add your token, you will be able to access the IoT Box from remote locations.

Configuring a POS
The IoT Box works with POS applications. In this recipe, we will learn how to configure the IoT Box
for POS applications.

Getting ready

Make sure the IoT Box is on and you have connected the IoT Box to the same Wi-Fi network as the
computer with the Odoo instance. Also, install the POS application if it is not already installed.

How to do it…

Perform the following steps to configure the IoT Box for the POS application:

1. Open the POS application, and open Settings from the POS session dropdown:

Figure 24.21 – POS session settings

Configuring a POS 655

2. Click on the Edit button and click on the IoT Box checkbox. This will enable more options:

Figure 24.22 – Selecting IoT devices

3. Select the devices that you want to use in a POS session. If you are going to use hardware, such
as a barcode scanner, select the relevant devices.

4. Save the changes by clicking the Save button in the control panel.

After the configuration, you will be able to use the IoT Box in the POS application.

How it works…

The IoT Box can be used with POS applications such as the PosBox. In order to use the IoT Box in
a POS application, you have to connect the IoT Box to the Odoo instance. If you don’t know how to
connect the IoT Box, follow the Adding the IoT Box to Odoo recipe. Once you have connected the
IoT Box to Odoo, you will be able to select the IoT Box in the POS application, as shown in step 2.

Here, you can select the hardware you want to use in the POS session. After saving the changes, if
you open the POS session, you will be able to use the enabled hardware at the POS. If you enabled
specific hardware from the settings but the hardware is not connected to the IoT Box, you will see
the following warning in the top bar:

Managing the IoT Box656

Figure 24.23 – IoT Box connection issues

You can click on these warnings to try to connect again.

There’s more…

The POS application is part of the Community Edition. If you are using the Community Edition,
instead of the IoT Box selection, you will see the IoT Box IP Address field in the POS settings:

Figure 24.24 – IoT Box settings in the Community Edition

If you want to integrate hardware in the Community Edition, you will need to use the IP address of
the IoT Box in the field.

Sending PDF reports directly to a printer 657

Sending PDF reports directly to a printer
The IoT Box runs the Common UNIX Printing System (CUPS) server by default. CUPS is a printing
system that allows a computer to act as a printing server. You can learn more about it at https://
www.cups.org/. So, as the IoT Box runs CUPS internally, you can connect network printers with
the IoT Box. In this recipe, we will see how you can print PDF reports directly from Odoo.

Getting ready

Make sure the IoT Box is on and you have connected the IoT Box with Odoo.

How to do it…

Follow these steps to print reports directly from Odoo:

1. Open the IoT Box home page via IP.

2. Click on the Printer Server button at the bottom.

3. This will open the CUPS configuration home page. Configure your printer here.

4. Once you have configured the printer, you will be able to see the printer in the IoT device list.
Activate developer mode and open Settings| Technical | Actions | Report.

5. Search for the report that you want to print, open the form view, and select the printer in the
IoT Device field, as shown in the following screenshot:

Figure 24.25 – Options to select an IoT device

Once this configuration is done, report PDFs will be sent directly to the printer.

Managing the IoT Box658

How it works…

This recipe is straightforward in terms of configuration, but there are a few things that you should
know. The IoT Box uses the CUPS server to print reports. You can access the CUPS home page at
http://<IoT Box IP>:631.

With CUPS, you can add/remove your printer. On the home page of CUPS, you will be able to see
all the documentation that you need to help you connect different types of printers. Once you have
configured the printer, you will find your printer in the IoT device list. Then, you can select this IoT
device (printer) in the report record. Usually, when you print a report in Odoo, it will download a
PDF of the report. But when this configuration is done, instead of downloading the report, Odoo
will send the PDF report directly to the selected printer. Note that only reports whose record has the
printer set in the IoT device field will be sent to the printer.

25
Web Studio

Odoo Web Studio is a feature exclusive to the Odoo Enterprise edition. It’s a toolbox that lets you
customize the Odoo user interface and its reports directly from the user interface without any code,
such as by dragging and dropping components onto the view directly. Users can create or customize
reports from the user interface itself.

Odoo Web Studio is a visual development tool that allows users to customize and create applications
within the Odoo Enterprise Resource Planning (ERP) platform. With Odoo Web Studio, users can
design, modify, and extend various aspects of their Odoo applications without the need for extensive
programming or coding skills. It offers a drag-and-drop interface, making it accessible to users with
varying levels of technical expertise.

Odoo Web Studio empowers users to take full control of their Odoo ERP system by providing a
user-friendly environment for module creation, report customization, automation, and more. It’s
a valuable tool for businesses looking to adapt and optimize their Odoo applications to meet their
unique requirements and preferences. So, Odoo Web Studio is a powerful tool that empowers users
to create and customize applications within the Odoo ERP system with ease. Whether you’re building
new modules, customizing existing ones, or designing reports, Odoo Web Studio provides a user-
friendly and visual interface to streamline these processes.

Here are some key features and capabilities of Odoo Web Studio:

• Visual customization: Odoo Web Studio provides a visual interface that allows users to
customize the layout, fields, and forms of their applications. You can modify existing modules
or create entirely new ones.

• Data model editor: Users can define new data models, fields, and relationships between objects
in their applications. This helps tailor the database structure to specific business needs.

• Workflow configuration: Workflow automation is a critical aspect of ERP systems. With Web
Studio, users can design and configure workflows, automation rules, and triggers to streamline
business processes.

• Reports and dashboards: Users can design custom reports and dashboards to visualize data
and gain insights into their business operations.

Web Studio660

• Mobile responsiveness: Odoo Web Studio applications are designed to be responsive, meaning
they can adapt to different screen sizes and devices, including smartphones and tablets.

• No-code or low-code: While some level of technical knowledge can be helpful, Odoo Web
Studio is designed to be user-friendly and accessible to those without extensive coding skills.
This makes it possible for business users to make changes and adapt Odoo to their specific needs.

• Real-time collaboration: Multiple users can collaborate on designing and modifying
applications simultaneously.

• Integration: Odoo Web Studio applications can be integrated with other Odoo modules and
external systems to ensure seamless data flow and connectivity.

In this chapter, we will cover the following recipes:

• Installing Odoo Web Studio

• Starting with a new app

• Suggested features

• Components

• Field properties

• Views

• Build a new app

• Customizing an existing app

• Built-in functions

• Reports

Installing Odoo Web Studio
In this recipe, you’ll learn how to install Odoo Web Studio.

Log into your Odoo instance with administrative or superuser credentials. In the Odoo interface, go
to the Apps module. This is where you can install or activate new modules and features:

1. Go to Apps.

2. Search for Web Studio.

3. Click INSTALL.

After installation, you should see a new menu item or section called Studio in your Odoo instance.
Click on it to access Odoo Web Studio:

Installing Odoo Web Studio 661

Figure 25.1 – Screenshot of the Studio button

Once you’re in Odoo Web Studio, you can start customizing your Odoo applications, designing
workflows, creating reports, and making other modifications using the visual tools and interface
provided. By clicking on the icon, the studio customization mode is activated.

Starting with a new app

In Odoo Web Studio, you typically start by creating a new application. An application can be thought
of as a module or a part of your ERP system. Click on the Create or New button to begin:

1. Go to the App menu screen.

2. Click on the Customize icon.

3. Click the New App button to start creating a new app:

Figure 25.2 – Screenshot of the New App creation screen

4. After clicking on New App, you’ll see the following:

Figure 25.3 – What you’ll see after clicking New App

Web Studio662

Click Next. From here, you can define your module’s name and change the logo of your module. You
can upload a custom logo or customize the logo’s icon, icon color, and logo background:

Figure 25.4 – Creating a new app

Choose a name for your application. You can customize the icon by choosing any of the in-built icons.
You’ll also have the chance to modify the background color and icon color as per your corporate
branding. After adding the module’s name, click the > button. At this point, you can add your first
menu’s name. Here, you have to build a new menu, so name it as you wish. Once you’ve done this,
you can choose the type of model you wish to create. If you’re creating an app from scratch, choose
New Model. Otherwise, choose Existing Model:

Figure 25.5 – Creating your first menu

Once you’ve done this, click the > button. Your app will be ready for the next level of customization.

Suggested features 663

Suggested features
Odoo Web Studio is a powerful tool that allows users to customize and extend their Odoo applications
without the need for extensive coding. Depending on your business needs, there are several suggested
features and capabilities that you can leverage when using Odoo Web Studio:

Figure 25.6 – Suggested features

Once you click on the CREATE YOUR APP button, you’ll see the following screen. Here, you can
add components and new fields, as well as modify or reuse existing model fields. You just need to
drag and drop the fields:

Web Studio664

Figure 25.7 – Model components

Components
Odoo Web Studio provides a set of components that you can use to create and customize modules
within the Odoo ERP system. These components enable you to design data models, user interfaces,
workflows, and reports without the need for extensive coding. Here are some of the key components
and features available in Odoo Web Studio:

• Data Model Designer: This component allows you to create and modify data models, define
fields, specify data types, set default values, and establish relationships between objects. You
can create custom objects to store data relevant to your business processes.

• Form Builder: The Form Builder component lets you design and customize forms for data entry
and display. You can drag and drop fields onto forms, arrange them, and set field properties
such as labels, help text, and validation rules.

• Workflow Editor: With the Workflow Editor component, you can design custom workflows
to automate business processes. You can define triggers, actions, and transitions, allowing you
to model how data moves through your application and what should happen at each stage.

• Report Designer: The Report Designer component enables you to create custom reports and
dashboards. You can design templates for reports, add charts, tables, and graphs to visualize
data, and generate printable or digital reports.

• Menu Editor: The Menu Editor component lets you create and modify menus and navigation
structures within your Odoo modules. You can define menus for different user roles and organize
them to provide easy access to various parts of your application.

Components 665

• Views and widgets: You can customize the way data is displayed using views and widgets.
Odoo Web Studio provides various view types, such as list views, form views, and kanban
views, which you can configure to suit your needs.

• Actions and triggers: Actions and triggers allow you to define what should happen in response
to certain events or user actions. For example, you can set up actions to send email notifications,
update records, or trigger specific workflows.

• Access control: Odoo Web Studio allows you to set permissions and access rights for different
user roles. You can control who can view, edit, or delete records and access specific features
within your modules.

• Localization support: Customize your modules to accommodate regional or industry-specific
requirements, including tax rules, languages, and accounting standards.

• Data import and export: Enable data import and export functionality to facilitate data migration
and integration with external systems.

• Scheduled actions: You can automate tasks and actions on a scheduled basis, such as data
backups or automated email notifications.

• Integration tools: Odoo Web Studio provides tools so that you can integrate your custom
modules with other Odoo modules or external systems, ensuring seamless data exchange
and synchronization.

Here is a default list view with a Description field:

Figure 25.8 – The default list view

Web Studio666

Field properties
In Odoo Web Studio, when creating or customizing fields in your data models, you have various options
to configure and customize these fields to suit your business needs. Here are some of the common
options that are available when creating new fields using Odoo Web Studio:

• Field Name: Give your field a descriptive name that reflects the type of data it will store.

• Field Type: Select the appropriate data type for your field. Odoo provides a wide range of field
types, including text, integer, float, date, datetime, selection, many2one (for relationships with
other records), and more.

• Required Field: You can make the field required, meaning that users must provide a value for
this field when creating or editing records.

• Default Value: Set a default value for the field. This value will be pre-filled when creating a
new record.

• Read-Only: Here, you can make the field read-only so that it cannot be edited by users. This
is useful for fields that should not be modified once set.

• Help Text: Add some help text or a description to provide additional information about the
field or instructions for users.

• Placeholder Text: For text or char fields, you can specify a placeholder text that appears in the
input field to guide users.

• Validation Constraints: Here, you can set validation constraints, such as character limits,
numeric ranges, or patterns for text fields.

• Compute and Default Functions: You can define compute functions to calculate the value
of the field based on other fields or conditions. Default functions allow you to set dynamic
default values.

• Dependencies: Here, you can define field dependencies, which determine when a field is visible
or required based on the values of other fields.

• Selection Values: For selection fields, specify the list of values that users can choose from. This
is often used for fields such as drop-down menus.

• Domain Filters: Apply domain filters to restrict the available choices for many2one or many2many
fields based on certain conditions.

• Advanced Options: Odoo Web Studio also offers advanced options, such as setting a related
field, specifying on-change actions, or setting access rights.

• Groups and Access Rights: Configure which user groups have access to view or edit this field.
You can define different access rights based on user roles.

• Computed Fields: Create computed fields that display calculated values based on other fields
in the record. These fields do not store data and instead dynamically calculate values.

Field properties 667

• Widgets: Choose different widgets to control how the field is displayed, such as text, selection,
date, or color picker widgets.

• Depends On: Define field dependencies, indicating which other fields affect the visibility or
behavior of this field.

• Related Fields: Create related fields to display information from related records. For example,
you can display a customer’s name on an invoice by creating a related field.

• Invisible or Hidden Fields: Make fields invisible or hidden to control their visibility on forms.

• Attachment Fields: Configure fields to allow attachments to be added or documents or files
to be uploaded.

The following screenshot shows the new fields:

Figure 25.9 – The new fields

Web Studio668

Here’s a screenshot of the existing fields:

Figure 25.10 – The existing fields

Views
In Odoo Web Studio, views are fundamental components for designing the user interface of your
custom modules. Views determine how data is displayed and interacted with in your Odoo applications.

Views 669

There are several types of views you can work with in Odoo Web Studio to create and customize the
user interface of your modules:

Figure 25.11 – Views

Let’s look at some of the commonly used view types.

Form views

Form views allow users to view and edit individual records. You can customize the layout of form views
by adding, removing, or rearranging fields. This view is commonly used for detailed record editing:

Figure 25.12 – Form view

Web Studio670

In Odoo Web Studio, the form view is a crucial component for designing the user interface of your
custom modules. Form views allow users to view and edit individual records within your application:

Figure 25.13 – Form view fields

We can create a form view using the fields shown in the preceding screenshot. Just drag and drop the
field to create a new field in the form view where we want to display it:

Figure 25.14 – The form view’s field details

Views 671

These are the field properties:

Figure 25.15 – The form view’s field properties

Here, we can see the view options for particular fields:

Figure 25.16 – Various form view field view options

Web Studio672

Let’s take a look at some of the important properties of the form view:

• View inheritance: In Odoo Web Studio, you can work with view inheritance. This allows you
to base a new form view on an existing one and make specific modifications or additions to it.
This can save you time when you’re creating similar views.

• Dependencies: You can configure field dependencies within the form view. For example, you
can make certain fields visible or required based on the values entered in other fields.

• Validation rules: Form views can have validation rules to ensure data accuracy. You can define
constraints on fields to control the input data.

• Saving and testing: Save your changes when you’re satisfied with the form view’s design. To
test the form view, go to the application or module where it’s used, create or edit a record, and
observe how your form view is displayed and functions.

• Custom actions: You can also link custom actions to buttons within the form view, allowing
users to perform specific actions when they’re interacting with records.

List views

List views display records in a tabular format, making it easy to browse and search multiple records. You
can customize list views by selecting which fields to display, setting sorting options, and adding filters:

Figure 25.17 – List view

Views 673

When you click a column in the list view, you can edit the properties of that field. Users can set the
following properties of the field:

• Invisible

• Required

• Read only

• Optional

• Label

• Widget

• Default value

• Limit visibility to the groups:

Figure 25.18 – List view properties

In Odoo Web Studio, the list view is an essential component for designing the user interface of your
custom modules. Here’s how you can work with list views in Odoo Web Studio:

1. Create a new list view: To create a new list view, click the Create button. Give it a name that
reflects its purpose or function within your module.

2. Design the list view: Once you’ve created the list view, you can start designing it.

3. Select the necessary fields: Choose which fields you want to display in the list view by dragging
and dropping them from the Fields section onto the list view canvas. You can arrange these
fields as columns.

Web Studio674

4. Column properties: Click on each column to access its properties. You can set labels, formatting
options, and sorting behavior for each column.

5. Sorting and grouping: Configure how the records should be sorted and grouped in the list view.

6. Filter criteria: Add filter criteria to limit the records that are displayed in the list view based
on specific conditions.

List view settings

Click on the list view itself to access its settings. You can configure various aspects, including the following:

• Access Rights: Define which user roles can view or access this list view.

• Advanced Options: Specify whether the list view should be visible, invisible, or read-only in
specific situations.

• Groups: Set permissions and access rights for different user groups.

• View Inheritance: Similar to form views, you can also work with view inheritance for list views.
This allows you to create new list views based on existing ones and make specific modifications
or additions.

• Search and Filter: List views typically include a search and filter functionality, allowing users
to quickly find records based on various criteria.

• Group By and Totals: You can enable grouping of records in the list view based on specific
fields. Additionally, you can display totals and subtotals for numerical fields.

• Batch Actions: List views often include batch actions that allow users to perform actions on
multiple selected records simultaneously, such as deleting, archiving, or updating records.

• Column Visibility: Users can often customize the visibility of columns in the list view, showing
or hiding specific columns based on their preferences.

• Sorting and Pagination: Configure how records are sorted and displayed on the list view,
including options for ascending or descending order and pagination.

Kanban views

Kanban views visualize records as cards or tiles, so they’re often used for managing tasks or workflows.
You can customize Kanban views by defining columns and cards’ content and appearance:

Views 675

Figure 25.19 – Kanban view

In Odoo Web Studio, Kanban views are useful components for designing user interfaces that visualize
records as cards or tiles. These are often used for managing tasks, workflows, or project stages. Kanban
views allow users to easily track the progress of records as they move through different stages. Let’s
learn how to work with Kanban views in Odoo Web Studio.

Accessing Kanban Views

Follow these steps:

1. To create or customize a Kanban view, go to the Studio module in your Odoo instance.

2. Click on the application or module for which you want to create or modify the Kanban view.

3. In the left sidebar, you will find a Views section, which includes Kanban Views. Click Kanban
Views to see the existing Kanban views or create a new one.

Creating a new Kanban view

To create a new Kanban view, click the Create button. Provide a name for the Kanban view that reflects
its purpose or function within your module.

Designing the Kanban view

Once you’ve created the Kanban view, you can start designing it:

• Define columns: Kanban views are organized into columns, representing different stages or
categories. Define the columns you need for your workflow.

• Add cards: Drag and drop fields from the Fields section onto the Kanban view to define what
information should be displayed on each card.

• Configure card properties: Click on each card to access its properties. You can set labels,
formatting options, and sorting behavior for each card.

Web Studio676

Kanban view settings

Click on the Kanban view itself to access its settings. You can configure various aspects, including
the following:

• Access Rights: Define which user roles can view or access this Kanban view

• Advanced Options: Specify whether the Kanban view should be visible, invisible, or read-only
in specific situations

• Groups: Set permissions and access rights for different user groups

View inheritance

As with other view types, you can work with view inheritance for Kanban views. This allows you to
create new Kanban views based on existing ones and make specific modifications or additions.

Record movement and actions

In Kanban views, records can typically be moved from one column to another to indicate progress.
You can configure actions or triggers that occur when records are moved or when specific actions
are taken on cards.

Filter and search

Kanban views often include filtering and search capabilities to help users find and organize cards
based on various criteria.

Card colors

You can use color-coding to highlight cards or records that require attention or have specific attributes.

Custom actions

Like other views, you can link custom actions to buttons or card interactions within the Kanban View.

Calendar views

Calendar views display records with date fields in a calendar format, making it suitable for scheduling
and event management applications:

Views 677

Figure 25.20 – Calendar view

In Odoo Web Studio, the calendar view is a component that allows you to present records with date-
related information in a calendar format. This view is particularly useful for applications that involve
scheduling, events, appointments, or any data that can be associated with dates and times. Let’s learn
how to work with calendar views in Odoo Web Studio.

Accessing calendar views

Follow these steps:

1. To create or customize a calendar view, go to the Studio module in your Odoo instance.

2. Click on the application or module for which you want to create or modify the calendar view.

3. In the left sidebar, you will find a Views section, which includes Calendar Views. Click Calendar
Views to see the existing calendar views or create a new one.

Creating a new calendar view

To create a new calendar view, click the Create button. Provide a name for the calendar view that
reflects its purpose or function within your module.

Web Studio678

Designing the calendar view

Once you’ve created the calendar view, you can start designing it:

• Define events: Calendar views typically represent events or records associated with specific
dates and times. You can define which fields from your data model will be displayed in the
calendar, such as event titles, start and end dates, descriptions, and more.

• Customize the events’ appearance: You can configure how events are displayed in the calendar,
including the colors, text labels, and tooltips.

Calendar view settings

Click on the calendar view itself to access its settings. You can configure various aspects, including
the following:

• Access Rights: Define which user roles can view or access this calendar view

• Advanced Options: Specify whether the calendar view should be visible, invisible, or read-only
in specific situations

• Groups: Set permissions and access rights for different user groups

View inheritance

Similar to other view types, you can work with view inheritance for calendar views. This allows you
to create new calendar views based on existing ones and make specific modifications or additions.

Drag-and-drop interaction

Users can typically interact with the calendar by dragging and dropping events to reschedule or
modify them.

Filter and search

Calendar views often include filtering and search capabilities to help users find and organize events
based on various criteria, such as date ranges or event types.

Event Details

Clicking on an event in the calendar view typically displays detailed information about the event,
allowing users to view or edit event details.

Custom actions

As with other views, you can link custom actions to buttons or event interactions within the calendar view.

Views 679

Graph views

Graph views allow you to create bar charts, line charts, and pie charts to visualize data based on
selected fields. This is useful for data analysis and reporting:

Figure 25.21 – Graph view

Pivot views

Pivot views provide an interactive way to analyze data by aggregating and summarizing records based
on selected fields. Users can create custom reports and perform ad hoc analysis:

Figure 25.22 – Pivot view

Web Studio680

Search views

Search views enable users to filter records based on specified criteria. You can customize search views
by defining search filters and filter groups:

Figure 25.23 – Search view

Gantt views

Gantt views are used for project management and to display tasks or events along a timeline. Users
can view and manage project schedules using this view:

Figure 25.24 – Gantt view

Building a new app 681

Resource views

Resource views are used for resource management and to display resources (for example, employees
and machines) and their availability over time.

Map views

Map views display records with geographic information on a map, making them suitable for
location-based applications.

Activity views

Activity views show a timeline of activities related to a record, helping users track interactions and history:

Figure 25.25 – Activity view

Building a new app
Creating a new app in Odoo Web Studio involves a series of steps to design and configure the data
model, user interface, and functionality according to your specific business requirements. Here, we’ll
cover the general steps you’ll need to follow to build a new app using Odoo Web Studio.

Defining the data model

In Odoo Web Studio, you can define the data model for your application. This includes creating custom
objects (database tables) to store your data.

Web Studio682

Use the visual interface to add fields, specify data types, set default values, and create relationships
between objects:

Figure 25.26 – Defining the data model

Once you click the New Model button, the next step is to specify the name of the model:

Figure 25.27 – Specifying the model’s name

Building a new app 683

Once you’ve done this, you must choose the features of that model and then click CREATE YOUR APP:

Figure 25.28 – Choosing model features

At this point, we’ll have different options to customize the app:

Figure 25.29 – Various model options

Web Studio684

Defining the general views

As explained in the Views recipe, we must choose the views of the model by clicking the VIEWS button:

Figure 25.30 – View options

Choose the views you wish to use as per your requirements and add fields as per your needs and
functions. These can be chosen from the left sidebar.

Defining the fields and components

In the form view, we can add Tabs and Columns from the Components section:

Figure 25.31 – Components options

Building a new app 685

Once you add tabs to the form view as one2many fields, you can edit the list and form view, as well
as the one2many field itself:

Figure 25.32 – Tabs options

Web Studio686

We can also set the details for Widget, Domain, and Limit visibility to groups, Context, and more,
as per the field types:

Figure 25.33 – Field properties

Text (char)

In Odoo Web Studio, Text fields are a common field type that’s used to store and display textual
information. Text fields are versatile and can be used to capture various types of textual data, such as
names, descriptions, comments, and notes.

Building a new app 687

Multiline text (text)

In Odoo Web Studio, a Multiline text field allows users to input and display text that spans multiple
lines or paragraphs. This type of field is useful when you need to capture longer descriptions, comments,
notes, or any other form of text that extends beyond a single line.

Integer (integer)

In Odoo Web Studio, an Integer field is used to store and display integer (whole number) values.
Integer fields are commonly used for various purposes, such as counting, quantifying, or capturing
numeric data that does not require decimal points.

Decimal (float)

In Odoo Web Studio, a Decimal field is used to store and display numeric values with decimal points or
fractions. Decimal fields are versatile and can be used to capture and store data that requires precision
in terms of decimal places.

HTML (html)

In Odoo Web Studio, an HTML field allows you to store and display HTML-formatted content
within your records. This field type is especially useful when you need to include rich text, formatted
descriptions, or multimedia content within your application.

Monetary (monetary)

In Odoo Web Studio, a Monetary field is used to store and display monetary values, such as currency
amounts. Monetary fields are essential for applications that involve financial transactions, accounting,
or any scenario where you need to handle currency-related data.

Date (date)

In Odoo Web Studio, a Date field is used to store and display date values. Date fields are essential for
applications that involve tracking events, scheduling, and recording dates associated with various records.

Date & Time (datetime)

In Odoo Web Studio, a Date & Time field is used to store and display both date and time values. This
field is especially useful for applications that must record events, appointments, or transactions with
precise timestamps.

Checkbox (Boolean)

In Odoo Web Studio, a Checkbox field is used to capture binary or Boolean values, which represent
two states: checked (true) or unchecked (false). Checkbox fields are commonly used to record yes/
no, on/off, or true/false responses to questions or conditions.

Web Studio688

Selection (selection)

In Odoo Web Studio, a Selection field is used to provide users with a predefined list of options from
which they can choose a single value. This type of field is commonly used when you want to capture
categorical or discrete data with a limited set of choices.

File (binary)

In Odoo Web Studio, a File field is used to allow users to upload and store files, such as documents,
images, spreadsheets, or any other type of digital files, within records. File fields are commonly used
when you need to associate files with specific records, such as invoices, contracts, or product images.

Lines (one2many)

In Odoo Web Studio, a Lines field, also known as a one2many field, is used to create a relationship
between two models (database tables) by establishing a one-to-many relationship. It allows you to
associate multiple records from one model with a single record in another model. Lines fields are
commonly used for scenarios where you need to link related records, such as order lines in an invoice
or tasks in a project.

One2many (one2many)

In Odoo Web Studio, a One2many field is used to establish a one-to-many relationship between two
models (database tables), allowing you to associate multiple records from one model with a single
record in another model. One2many fields are commonly used in scenarios where you need to link
related records, such as order lines in an invoice, tasks in a project, or products in a sales order.

Many2one (many2one)

In Odoo Web Studio, a Many2one field is used to establish a many-to-one relationship between two
models (database tables), allowing you to associate a single record from one model with multiple
records in another model. Many2one fields are commonly used in scenarios where you need to link
records to a parent or reference record, such as linking a product to a category or a task to a project.

Many2many (many2many)

In Odoo Web Studio, a Many2many field is used to establish a many-to-many relationship between
two models (database tables), allowing you to associate multiple records from one model with multiple
records in another model. Many2many fields are commonly used in scenarios where you need to
link multiple records to each other, such as tagging products with multiple categories or associating
employees with multiple skills.

Image (binary)

In Odoo Web Studio, an Image field is used to allow users to upload and display images within records.
Image fields are commonly used when you need to associate images with specific records, such as
product images, profile pictures, or images related to marketing materials.

Building a new app 691

As shown in the following screenshot, we added one Compute field (Total) using Odoo Web Studio:

Figure 25.35 – Screenshot of the Added Total float field to write a compute method

Click the MORE button to see all the properties of the field:

Figure 25.36 – MORE

Web Studio692

Once you’ve done this, you’ll see the Dependencies and Compute options under
ADVANCED PROPERTIES:

Figure 25.37 – The ADVANCED PROPERTIES area

In Odoo, a Computed field is a field that is not stored in the database but is dynamically calculated
based on the values of other fields or data. Computed fields are used to display calculated or derived
values in your records. They are especially useful when you need to perform calculations or apply
business logic to fields in your database records.

The only predefined variables are as follows:

• self (the set of records to compute)

• datetime (Python module)

• dateutil (Python module)

• time (Python module)

Other features are accessible through self, such as self.env.

Building a new app 693

So, add some field dependencies and write the Python code in the Compute box:

Figure 25.38 – The compute method’s code

Now the compute method calculates the field values and stores them in the Total field:

Figure 25.39 – The compute method’s calculation in the Total field

Adding a button

In Odoo Web Studio, you can add a button to your custom views to trigger specific actions or functions
within your Odoo application. Buttons are commonly used to initiate processes, validate data, or
perform custom actions.

Web Studio694

To add a button to your views, click on the XML section and add a new button through the code.
Note that the button must be an action type button:

Figure 25.40 – The XML section, where you can add/modify anything through code

Once we click XML, the editor will open so that we can modify or add anything through the code:

Figure 25.41 – Using the XML editor to add/modify anything through code

Building a new app 695

Adding a smart button

In Odoo Web Studio, a smart button is a dynamic UI element that displays summarized information
and provides quick access to related records. Smart buttons are commonly used to display counts of
related records, such as the number of orders, tasks, or leads associated with a specific record, and
they allow users to navigate to those related records with a single click.

Hover your mouse cursor over the top-right corner; a + sign will become visible. You can use this to
add a smart button:

Figure 25.42 – Adding a smart button

Once you click on the + sign, a new window will open called Add a Button. Here, you can add a label
and choose the icon of the smart button:

Web Studio696

Figure 25.43 – The Add a Button options

Adding a status bar and filters

In Odoo Web Studio, you can create and customize a status bar and filters to enhance the user experience
and improve the navigation of your custom views. Status bars typically display key information about
the current record or context, while filters allow users to refine the records that are displayed in a list
or search view:

Building a new app 697

Figure 25.44 – Add a pipeline status bar

Once you click on the Add a pipeline status bar button, a window will open where you can add
status bar options:

Figure 25.45 – Status bar properties

Web Studio698

Once you’ve edited and added the status bar’s field properties, click CONFIRM. The status bar will
now be visible in your views:

Figure 25.46 – The added status bar

Filters

In Odoo Web Studio, you can create and customize filters to allow users to refine and filter records
in list views and search views. Filters are valuable in helping users find specific information within
a large dataset:

Figure 25.47 – Filter Rules

Building a new app 699

The following screenshot shows the common filter rules you must configure, as per your needs. You
can also customize the domain as per the filter rules:

Figure 25.48 – Adding new filter rules

Edit Menu

In Odoo Web Studio, you can customize the menu structure of your Odoo application by adding,
editing, or removing menu items. These menu items allow users to access different parts of the
application, such as modules, views, and actions:

Figure 25.49 – Edit Menu

Web Studio700

Once you click the Edit Menu button, a window will open where you can edit menu items:

Figure 25.50 – Editing menu items

Click on the Edit icon of the menu item you wish to edit. Here, you can edit the following:

• Name: Change the display name of the menu item.

• Action: Modify the action associated with the menu item. Actions define what happens when
users click on the menu item. You can associate a specific view, action, or function with the
menu item.

• Parent Menu: Specify the parent menu under which the menu item should appear. This controls
the hierarchy and organization of the menu’s structure.

• Visibility: Define the visibility of the menu item based on user roles, groups, or conditions.

• Icon: Optionally, add an icon to represent the menu item.

• Sequence: Adjust the order in which the menu item appears within its parent menu.

• Access Rights: Configure access rights and permissions for the menu item, specifying which
user roles can see or access it.

Customizing an existing app
Customizing an existing app in Odoo Web Studio involves making modifications to the app’s functionality,
views, and data structures so that it can be aligned with your specific business requirements. This
recipe will cover the general steps you must follow to customize an existing app in Odoo Web Studio:

Customizing an existing app 701

Note
Customizing an existing app typically requires developer-level access or the use of Odoo Web
Studio for simpler customizations. Ensure you have the necessary permissions and access.

Figure 25.51 – Customizing an existing app

Choosing an existing app to customize

From the main dashboard or menu, select the app or module you want to customize. This could be
any existing app in Odoo. Here, you have various options:

• Customize views: Use Odoo Web Studio to customize the views of the app. You can modify
existing views or create new ones to display data in the way you want. You can add or remove
fields, change their labels, and adjust their positions on form views, list views, Kanban views,
and more.

• Add or modify fields: Add new fields to the app’s data model or modify existing fields. You
can define field types, labels, default values, and other field properties using Odoo Web Studio.

• Create or edit actions: Define actions and workflows for the app. Actions determine what
happens when users perform specific actions, such as clicking buttons or menu items. You can
create custom actions or modify existing ones.

• Add buttons and menu items: Customize the app’s menu structure by adding buttons, menu
items, and links to various parts of the app. This allows users to navigate easily between different
views and functionalities.

Web Studio702

• Configure access rights: Set access rights and permissions for the app’s views, models, and
actions. Define who can view, edit, or delete data and access specific features within the app.

• Implement business logic: Use Odoo Web Studio to implement custom business logic by
defining computed fields, server actions, and other rules that automate processes and calculations
within the app.

• Add custom reports: If needed, create custom reports and documents using Odoo’s reporting
tools. Define report templates and layouts to generate documents such as invoices, purchase
orders, and sales quotes.

Built-in functions
Odoo Web Studio provides a set of built-in features and tools that allow users to customize, extend,
and enhance their Odoo applications without the need for extensive programming or development
skills. These built-in features are designed to streamline app customization and empower users to
adapt their Odoo instance to their specific business needs.

Importing modules

Once you click on the Import link, a pop-up window will appear where you can upload the module’s
ZIP file:

Figure 25.52 – Screenshot of the Import Export options

Built-in functions 703

Here’s what the Import modules option looks like:

Figure 25.53 – Import modules

Upload your Module file (.zip) and check Force init. Force init mode, even if installed, will update
‘noupdate == 1’ records:

Figure 25.54 – Successfully importing a module

Web Studio704

Once you’ve uploaded the module file and clicked Import, you will get a message stating that the
module was imported successfully:

Figure 25.55 – The imported module

Go to the App list and search for the Studio customizations module.

Exporting modules

To export modules from the Odoo database, you have to install the Odoo Studio module and then
customize it in the database. If we do any customization from Odoo Web Studio, a new module will
be created in the database:

Figure 25.56 – The Export option

Once you click on the Export link it will download the Studio customize module. You can also import
this module into other Odoo databases.

Built-in functions 705

Search view

In Odoo Web Studio, you can customize search views to tailor the way users search for and filter
records within a specific module or application. Search views allow users to refine their search criteria,
making it easier to find specific records:

Figure 25.57 – Search filters

Click on the Studio icon, then VIEWS. Select the Search view:

Figure 25.58 – The Search view

Web Studio706

After clicking the Search view, the following screen will open. Here, you can modify or add search filters:

Figure 25.59 – Search view filters

Automations

Odoo provides automation capabilities to help streamline business processes and reduce manual
tasks. These automation features are designed to make it easier for users to configure and customize
automated actions within their Odoo applications.

Automated actions

Odoo Studio allows users to create automated actions that trigger specific tasks based on predefined
conditions or events. These actions can be associated with various Odoo modules and can include
actions such as creating records, sending emails, updating fields, and more. Users can define the
conditions that trigger these actions and specify what should happen when the conditions are met.

Scheduled actions

Users can schedule automated actions to run at specific times or intervals. This is useful for tasks such
as sending automated reminders, generating reports, or performing data maintenance tasks. Scheduled
actions can be configured to execute daily, weekly, monthly, or on a custom schedule.

Email automation

Odoo Studio enables users to automate email notifications and communications. Users can set up
automated email triggers for events such as order confirmation, invoice generation, or when specific
conditions are met. Email templates can be customized to include dynamic data from Odoo records.

Built-in functions 707

Server actions

Server actions allow users to define custom Python code or server-side logic that can be executed as
part of an automated action. This provides advanced customization options for complex automation
tasks that require custom programming:

Figure 25.60 – Automations

Once you click on the Automation link, the following screen will appear. Here, you can add a new
automation action:

Figure 25.61 – Adding a new automation

There are multiple options you can choose from when performing an automation action:

• Execute Python Code

• Create a new Record

• Update the Record

• Execute several actions

• Send Email

• Add Followers

• Create Next Activity

• Send SMS Text Message

Web Studio708

Here, choose Execute Python Code from the Action To Do dropdown to run the Python code:

Figure 25.62 – Action To Do

Reports
In Odoo Web Studio, you can customize reports in terms of their layout, content, and appearance
so that they meet your business needs. Report customization allows you to create professional and
branded documents, such as invoices, purchase orders, quotations, and more.

Navigate to the Studio module within Odoo to access the report customization features.

Choose the app or module for which you want to customize reports. Typically, reports are associated
with specific modules, such as Sales, Purchase, Inventory, or Accounting:

Reports 709

Figure 25.63 – The Reports menu

Once you click on the Reports menu, a screen will appear where you can choose existing model
reports or create new reports:

Figure 25.64 – Reports

Web Studio710

Click CREATE to create a new report for the model:

Figure 25.65 – Choosing a report type

Odoo Web Studio allows you to create external reports, also known as custom reports, so that you can
generate documents and reports outside of the standard built-in reports provided by Odoo. External
reports can be highly customized to meet specific business requirements.

External reports

Here’s what the External report template looks like:

Figure 25.66 – An external report template

Reports 711

Internal reports

To create a PDF report in Odoo without a header and footer, choose the Internal report template:

Figure 25.67 – An internal report template

Blank reports

To create a PDF report in Odoo without any predefined structure, choose the Blank report template:

Figure 25.68 – A blank report template

Web Studio712

In Odoo Web Studio, you can customize existing reports in terms of their layout, content, and appearance
to meet your specific business needs. This customization allows you to make adjustments to standard
reports provided by Odoo so that they match your company’s branding and presentation requirements:

Figure 25.69 – The QUOTATION/ORDER sales report

There is also an XML editor option so that you can design complex parts of the report via code:

Figure 25.70 – The XML option

Reports 713

So, click XML to customize the report’s design through code:

Figure 25.71 – The XML editor

Choose a different report template from the selection:

Figure 25.72 – The XML editor – choosing a different report

Web Studio714

All newly created reports will be displayed under Reports:

Figure 25.73 – Screenshot of the created report

Note that you now have the option to Print the report:

Figure 25.74 – The Print option

Modules

To export modules from the Odoo database, you have to install the Odoo Studio module and then
start customizing the database. If we do any customization from the Studio module, a new module
will be created in the database:

Figure 25.75 – The Export module

Once you click on the Export link, the Studio customize module will be downloaded. You can also
import this module into other Odoo databases.

Reports 715

Search views

In Odoo Web Studio, you can customize search views to tailor the way users search for and filter
records within a specific module or application. Search views allow users to refine their search criteria,
making it easier to find specific records:

Figure 25.76 – Search filters

Click the Studio icon, then VIEWS. Once you’ve done this, select the Search view:

Figure 25.77 – The Search view

After clicking on the Search view, the following screen will open. Here, you can modify or add
search filters:

Web Studio716

Figure 25.78 – Search view filters

Automations

Odoo provides automation capabilities to help streamline business processes and reduce manual
tasks. These automation features are designed to make it easier for users to configure and customize
automated actions within their Odoo applications.

Automated Actions

Odoo Studio allows users to create automated actions that trigger specific tasks based on predefined
conditions or events. These actions can be associated with various Odoo modules and can include
actions such as creating records, sending emails, updating fields, and more. Users can define the
conditions that trigger these actions and specify what should happen when the conditions are met.

Scheduled Actions

Users can schedule automated actions to run at specific times or intervals. This is useful for tasks like
sending automated reminders, generating reports, or performing data maintenance tasks. Scheduled
actions can be configured to execute daily, weekly, monthly, or on a custom schedule.

Email Automation

Odoo Studio enables users to automate email notifications and communications. Users can set up
automated email triggers for events such as order confirmation, invoice generation, or when specific
conditions are met. Email templates can be customized to include dynamic data from Odoo records.

Reports 717

Server Actions

Server actions allow users to define custom Python code or server-side logic that can be executed as
part of an automated action. This provides advanced customization options for complex automation
tasks that require custom programming.

Figure 25.79 – Screenshot of the Automations

Once you click on the Automation link, it will open the screen to add a new automation action.

Figure 25.80 – Screenshot of the Add New Automation

There are multiple options to do an automation action.

• Execute Python Code

• Create a new Record

• Update the Record

• Execute several actions

Web Studio718

• Send Email

• Add Followers

• Create Next Activity

• Send SMS Text Message

Figure 25.81 – Screenshot of the Action To Do

Index

Symbols
<function> 157
<group> element 217
<notebook> tag 218
<page> tag 218
_auth_method_() function 354
@http.route decorator 360
__name__ variable 163

A
abstract models

using, for reusable model features 109, 110
access

limiting to fields, in models 270, 271
access-control lists (ACLs) 152
access security

adding 62-64
access security groups

adding, to module 262-265
ACL files 264
action button

adding, to keyboard 590-594
actions

parameters, passing to 221-223

activities
managing, from Kanban card 337, 338

activity view 681
defining 259, 260

addControlButton() method 594
add-on installation 42
add-on modules

installing, from GitHub 43, 44
list, updating 27-29

add-ons changes
applying 45

add-ons path
configuring 32, 33

add-on updates 42, 152-154
Affero General Public License

version 3 (AGPLv3) 3
API decorators

using 112-114
API keys

generating 561-563
archive option

enabling, for records 341, 342
asset bundles 365

features 365
assets 364

defining, in module manifest 372, 373
managing 364

Index720

attachments
displaying, on side of form view 244-247

attributes 218
used, for dynamic form elements 242

auto instantiation 447
auto_join attribute 92
automated actions 706, 716

using, on event conditions 329-331
using, on time conditions 325-328

automated tests 510
automation 706, 716

automated actions 706
email notifications and communications 706
scheduled actions 706
server actions 707

automation, reports
automated actions 716
email automation 716
scheduled actions 716
server actions 717

auto-reload 159

B
backup

obtaining 527, 528
balenaEtcher

reference link 634
base_group_user method 354
blank Raspberry Pi 634
blank report 711-714
Boolean field 85
branches

development branch, creating 518, 519
managing 517
production branch, creating 517, 518
production branch, features

merging 520, 521
staging branch, creating 519, 520

build status
checking 528, 529

built-in functions 702
automation 706
export modules 704
import modules 702-704
search view 705, 706

business logic 343
extending 132-134

button element 217
buttons

adding, to forms 220, 221

C
calendar view 676, 677

accessing 677
creating 677
custom actions 678
designing 678
drag-and-drop interaction 678
event details 678
filter and search 678
settings 678
view inheritance 678

calendar views
defining 252, 253

Cascading Style Sheets (CSS) 364
chatter documents

managing 611-613
check_access_rights method 556
client-side code

debugging 437-440
client-side evaluation 224
client-side QUnit test cases

adding 487-490
client-side QWeb engine 423
client-side QWeb templates

using 416-422

Index 721

client-side test cases
debugging 497-500
QUnit test cases, running from UI 495
running, from UI 495
tours, running from UI 496, 497

cohort view
defining 255, 256

columns
kanban cards, displaying according

to state 250-252
command line

used, for installing web interface 41
command-line interface 164
commit() method 580
computed field

adding, to model 97-99
compute method

used, for defining onchange method 197
conditionals 378
configurable precision

used, for adding float field 85, 86
connected devices

listing 645-649
constraints validations

adding, to model 95, 96
content

adding, to form view 215, 216
content management system (CMS) 363
context 91, 183, 221

using, to compute default values 191, 192
continuous integration (CI) 36
controllers 343
converters 356
cors parameter 350
create() method 122

extending 134-137
CSS 344

adding for website 371

CSV files
used, for loading data 151, 152

custom assets
after 368
appending 367
before 367
creating 366
include 368
operations 366
order, loading 369
prepending 367
removing 368
replacing 368, 369

customer receipts
modifying 603, 604, 605

customer relationship
management (CRM) 2

customization 375
custom modules

adding 514-516
installing 514-516

custom Settings options
adding 200-203

custom widgets
creating 412-416

D
data

loading, with CSV files 151, 152
loading, with XML files 146-149

database-level constraints 95
database queries

used, for accessing records 577-579
data fields

adding, to models 79-83
data files 58, 143

Index722

data group
fetching, with read_group()

method 140, 141
data key 264
data migration 152-154
data model

defining 681
Date field 84
Datetime field 84
debugging options

accessing 522
branch history 522
code editor 525, 526
logs 526
mail catcher 523
web shell 523-525

debug mode options 171
Activate Assets Debugging 174
Activate Test Assets Debugging 174
Disable Tour 172
Edit Action 173
Edit ControlPanelView 174
Edit View 174
Fields View Get 174
Leave Developer Tools 175
Manage Filters 173
Open View 172
Regenerate Assets Bundles 174
Run Click Anywhere Tests 172
Run JS Mobile Tests 172
Run JS Tests 172
Start Tour 173
Super User 174
Technical Translations 173
View Access Rights 173
View Fields 173
View Record Rules 173

default values
computing, with context 191, 192

dependency handling 43
developer mode 25
development branch 521
dev options 159-161

all 160
ipdb 160
pdb 160
pudb 160
qweb 160
reload 160
wdb 160
werkzeug 160
xml 160

display_name field 75-78
document activity

managing 614, 615
Document Object Model (DOM) 500
document-style forms

defining 240, 241
domain 91
drivers

loading 645-649
duplicate data structures 106
dynamic attributes 376, 377
dynamic form elements

with attributes 242
dynamic record stages

managing 304-306
working 306, 307

dynamic relations
adding, with reference fields 101, 102

dynamic routes
managing 379-383

dynamic snippet 386-390

E
edit mode 220
Elements tab 440

Index 723

email alias
managing 624-626

email automation 716
emails

sending, with Jinja template 616-620
sending, with QWeb template 620-623

embedded views
defining 243, 244

empty recordset
obtaining, for model 117, 118

Enterprise edition 245
Enterprise Resource Planning (ERP) 2, 659
event conditions

automated actions, using 329-331
event triggers 318
existing app

customizing 700, 701
existing business logic

modifying 601-603
existing handler

modifying 357-359
existing views

modifying 235-237
export modules 704
Export Translation feature

working 296
external IDs

using 144, 145
external report 710
Extra Rights 265

F
failed test cases

used, for generating videos/
screenshots 500, 501

features
activating, with security groups 275-280

field element 217
fields 377

removing 238
field type

checkbox 687
compute method, defining 689
compute method, defining

with code 689-693
date 687
date & time 687
decimal 687
file 688
HTML 687
image 688
integer 687
lines 688
many2many 688
many2one 688
monetary 687
multiline text 687
one2many 688
priority 689
related field 689
selection 688
signature 689
tags 689
text 686

filter() method 129
filters

defining, on record lists 224-226
float field

adding, with configurable precision 85, 86
flush() method 577
Font Awesome

reference link 241
forcecreate flag

using 150, 151
form element 217

Index724

forms
buttons, adding to 220, 221
parameters, passing to 221-223

form view 669-671
attachments, displaying on side 244-247
content, adding to 215, 216
OWL filed, adding 461-465
properties 672
stat button, adding 339-341
widgets, adding to 215, 216

functions
invoking, from XML files 156, 157

G
gantt view 680

defining 256-259
get_json_payload() method 549
gettext tools

using, for easy translation work 297-299
Git configuration 9
GitHub

used, for installing add-on modules 43, 44
Git repositories 3
git tool 8
global record rules 275
GNU/Linux 6
graphical user interface (GUI) 75
graph view 679

defining 253, 254
grouped data

accessing 573, 574
group tag 233

H
header element 217
Headless Chrome for client-side test cases

setting up 486, 487

hierarchy
adding, to model 93, 94

hooks 447, 452
used, for making OWL component 452-454

Hostel Manager 62
HTTP routes

reference link 351
HTTP server 343

I
image.mixin 572
image size

generating 571, 572
import modules 702-704
Import Translation feature 300
in-app purchasing (IAP) 471

concepts 472
incoming email server

configuring 607-609
inheritance

used, for adding model features 103, 104
used, for copying model definition 105-108

init hooks
implementing 204, 205

inline editing 378, 379
input device

taking 649-651
instance configuration file

storing 22, 24
instance directory layout

standardizing 34-37
internal report 711
Internet of Things (IoT) 2, 633
invisible attribute 224
IoT Box 633

accessing, through SSH 652, 653
adding, to Odoo 640-644

Index 725

connecting, with network 636-640
connecting, with pairing code 644, 645

IoT Box image
flashing, for Raspberry Pi 634-636
reference link 634

ir.actions.act_window.view model 214
ir.ui.view model

attributes 70

J
JavaScript 344

adding, for website 371
debugging 369

JavaScript/SCSS files
adding 588-590

Jinja template
field list 618
used, for sending emails 616-620

jQuery’s QUnit 487
JSON-RPC

used, for calling method 556-558
used, for connecting Odoo 547-550
used, for creating records 553, 555
used, for deleting records 553, 555
used, for fetching records 550, 551, 552
used, for logging in Odoo 547-550
used, for searching records 550-552
used, for updating records 553, 555

K
Kanban board

features 310
Kanban card

activities, managing 337, 338
displaying, in columns according

to state 250-252
interactive card, creating 313-317
quick create form, adding 310-312

Kanban stages
managing 307, 309
working 309

Kanban views 674
accessing 675
card colors 676
creating 675
custom actions 676
defining 247-249
designing 675
filter and search 676
record movement and actions 676
setting 676
view inheritance 676
progress bar, adding 317, 318

keyword arguments
count=boolean 125
limit=N 125
offset=N 125
order=sort_specification 125

L
lang context key 291
language installation

setting up 286-289
language’s locale settings

setting up 289, 291
lazy loading 370

for images 371
Leaner Style Sheets (LESS) 366
Least Recently Used (LRU) cache 570, 571
Lesser General Public License

v3.0 (LGPLv3) 2
Linux Ubuntu 6
list view 672-674

defining 228, 229
settings 674

Index726

local add-on modules
installing 37, 38
installing, from web interface 38-40
upgrading 37, 38

local area network (LAN) 640
log_all_room_members method 117
logging level 163
logging module 162
loops 375, 376

M
make_available() method 134
make_closed() method 134
makeView function

resModel 491
serverData 491
type 491

many2many field 84
attributes 92

many2one field 84
mapbox

reference link 260
mapped() method 130
map view 681

defining 260
marketing campaign

tracking 401-403
menu items

adding 64-69, 208-211
attributes 69

menus 212
hiding, based on security groups 283, 284

metadata
viewing 145

method calling
with JSON-RPC 556-558
with modified context 183-185
with XML-RPC 545, 546

method execution
tracing, with Python debugger 166-169

methods
calling, interactively with

Odoo shell 164-166
debugging, with server logs 161-164

methods parameter 350
microSD 634
Microsoft Store 6
mobile app JavaScript 443, 444
mobile JavaScript

reference link 445
mobile utilities 445
model

adding 60-62
defining, based on SQL view 198, 199

model definition
copying, with inheritance 105-108

model features
adding, with inheritance 103, 104

model methods
specifying 112-114

model, renderer, controller (MRC) 436
model representation and order

defining 74, 75
model, view, controller (MVC) 436
modules 714
monetary field

adding, to model 87, 88
monkey patch 458
multiple records

creating 575-577
writing 575-577

multiple websites
managing 403-406

N
namespaces

using 144, 145

Index 727

network path
accessing 345-347

Network tab 440
new app

building, with Odoo Web Studio 681
button, adding 693
components, defining 684, 685
data model, defining 681-683
edit menu 699, 700
fields, defining 684, 685
filters 698
general views, defining 684

new app, button
filters, adding 696, 697
smart button, adding 695
status bar, adding 696, 697

new records
creating 118-121

newsletter subscribers 231
ngrok

reference link 653
non-relational fields

types 81
noupdate flag

using 150, 151

O
object-relational mapping

(ORM) 61, 74, 567
Odoo 285

connecting, with JSON-RPC 547-550
connecting, with XML-RPC 536-538
installing, from source 6-8
instance 10-12
IoT Box, adding 640-644
logging in, with JSON-RPC 547-550
logging in, with XML-RPC 536-538

Odoo add-on module 50, 51
creating 51-53
file structure, organizing 57-59
installing 51-53
manifest file 54-56

Odoo app store 4
reference link 5

Odoo classes
BaseCase class 482
Common class 481
FormCase class 482
FunctionCase class 482
HttpCase class 482
SavepointCase class 481
SingleTransactionCase class 482
TransactionCase class 482

Odoo Community Association
(OCA) 5, 43, 558

reference link 5
Odoo developer tools

activating 25-27
Odoo ecosystem 2
Odoo editions 2
Odoo eLearning platform 5

reference link 5
odoo.execute method 561
Odoo help forum 5

reference link 5
odoo.http.request 350
odoo.http.route 348
Odoo IAP 473

accounts 474, 475
credits, buying 474
customer 473
low credits notification 476
Odoo 473
portal 476
service provider 473

Index728

odoorpc library 558, 560
Odoo server databases

database, backing up 18
database back up, restoring 19, 20
database, duplicating 16, 17
database management interface,

accessing 13
database, removing 17, 18
managing 12, 20, 21
master password, changing 13, 14
master password, setting 13, 14
new database, creating 15

Odoo.sh 508
concepts 508
features 509
need for 508
usage 509

Odoo.sh account
creating 510-513

Odoo shell
using, to interactively call methods 164-166

Odoo.sh options 530
collaborators 530
database workers 533
module installation 531
project name 530
public access 531
staging branches 534
submodules 532

Odoo source code revisions 534
Odoo themes

reference link 5
Odoo v13 100
Odoo Web Library (OWL) 411, 447
Odoo web server

key aspects 343
Odoo Website Builder

features 363
using 375

Odoo Web Studio
components 664, 665
field properties 666-668
installing 660
key features 659, 660
new app, starting 661, 662
suggested features 663
used, for building new app 681
views 668, 669

onboarding
improving, with tours 440-443

onchange methods
calling, on server side 195, 196
defining 194
defining, with compute method 197

one2many field 84
attributes 92

operators and semantics 227
ordering 230
order of evaluation

in view inheritance 239
ormcache 568, 570
ormcache_context 569
ormcache_multi 569
outgoing email server

configuring 607-610
field list 611

OWL component
creating 448-450
making, with hooks 452-454
user actions, managing 450, 451

OWL component life cycle 454-458
mounted method 459
onError method 460
patched method 460
rendered method 458
setup method 458
willDestroy method 460
willPatch method 459

Index 729

willRender method 458
willStart method 458
willUnmount method 460
willUpdateProps method 459

OWL filed
adding, to form view 461-465

OWL framework
reference link 447

OWL library
reference link 450

P
pairing code 644

used, for connecting IoT Box 644, 645
parameters

passing, to actions 221-223
passing, to forms 221-223

parameters passed
consuming 355, 356

pdb.set_trace() statement 170
PDF reports

sending, to printer 657, 658
periodic collector 584, 585
periodic digest emails

sending 629-631
pip3 tool 8
pivot view 679

defining 253, 254
Platform as a Service (PaaS) 508
point of sale (POS) 587, 633

configuring 654-656
Point of Sale screen UI

modifying 599-601
PostgreSQL aggregate functions

reference link 575
PostgreSQL constraints

reference link 96

PostgreSQL database
configuring 8

PostgreSQL server 233
post-migration step 154
prefetching pattern

for recordset 565-567
pre-migration step 154
production branch 521
production database size 534
profiler

performance pitfalls 586
profiling 580

collectors 584
enabling 580, 581
results, analyzing 582, 583
SQLCollector 584

progress bar
adding, to Kanban views 317, 318

Promise
reference link 426

proposed PRs
applying 46, 47
testing 46, 47

prototype inheritance 105, 106
publish management

for website-related records 408-410
pull requests (PRs) 3, 31
Python code 58
Python code, server actions

using 323, 324
working 324

Python debugger
using, to trace method execution 166-169

Python debugger (PDB) 160
Python packages

installing 10
Python test cases

adding 479-482

Index730

Python unittest
reference link 481

Q
quick create form

adding, to Kanban card 310-312
QUnit test cases

reference link 491
running, from UI 495

QWeb-based PDF reports
creating 332-336

Qweb collector 585
QWeb template 258, 374, 416, 465, 601

attributes 467, 468
calling sub-templates 468
conditional directive 466
data output 465
loop 467
used, for sending emails 620-623
variables setting 466

R
random data for testing

populating 502-505
Raspberry Pi 633

used, for flashing IoT Box image 634-636
Raspberry Pi 3 Model B+

reference link 633
Raspberry Pi 3 Model B+ types

Ethernet 637
Wi-Fi 637

raw SQL queries
executing 185-188

React 447
reactivity 447

read_group() method 573
arguments 141, 142
used, for fetching data group 140, 141

read_group() method, parameters
domain 574
fields 574
groupby 574

readonly attribute 224
read-only mode 220
record access

limiting, with record rules 272-275
record lists

filters, defining on 224-226
record rules 272, 273
records

accessing, through database queries 577-579
archive option, enabling 341, 342
creating, with JSON-RPC 553, 554, 555
creating, with XML-RPC 542-545
deleting, from XML files 155, 156
deleting, with JSON-RPC 553-555
deleting, with XML-RPC 542-545
fetching, with JSON-RPC 550-552
reading, with XML-RPC 538-542
searching 124, 125, 126
searching, with JSON-RPC 550-552
searching, with XML-RPC 538-542
updating, with JSON-RPC 553, 555
updating, with XML-RPC 542-545

recordset records values
updating 122, 123

recordset relations
traversing 129, 130

recordsets
accessing, as superuser 281, 282
combining 126, 127
filtering 128, 129

Index 731

prefetching pattern 565-567
sorting 131, 132

reference fields
used, for adding dynamic relations 101, 102

relational field
adding, to model 88-92

Remote Procedure Call (RPC) 115, 490, 535
reports 708, 709, 710

automation 716
blank report 711-714
external report 710
internal report 711
modules 714
search views 715

resource view 681
RESTful API 344
ReStructuredText (RST) format 55
return on investment (ROI) 401
return values 349
reusable model features

abstract models, using 109, 110
RJ45 Ethernet cable 637
route decorator 350
routing 343
RPC calls

making 594-598
making, to server 423-425

Runbot 4
reference link 4

S
Sassy CSS (SCSS) 366
scaffold command

using, to create module 70, 72
scheduled actions 716
SCSS preprocessor

reference link 373

search_count(domain) method 125
searched records

customizing 137-140
search filter side panel

adding 234, 235
searching, with domains

pitfalls 227, 228
search() method 131
search_read() method 553
search view 680, 705, 706, 715

defining 230-232
security 343
security access 262

adding, to models 266-269
security ACLs 266
security groups 262

comment field 266
features, activating 275-280
menu_access field 265
model_access field 265
rule_groups field 266
view_access field 265

selection attribute 102
SEO options

managing 395-397
server

RPC calls, making to 423-425
server actions 717

creating 318-321
working 321

server-level constraints 95
server logs 161

used, for debugging methods 161-164
setUp() method 482
sitemaps

managing, for website 398, 399
Software as a Service (SaaS) 4, 508
sorted() method 131

Index732

SQLCollector 584
periodic collector 584, 585
QWeb collector 585
Sync collector 585

SSH
used, for accessing IoT Box 652, 653

staging branch 522
stat button

adding, to form view 339-341
static resources

serving 360-362
static snippet 383-386
storage field

exposing 100, 101
styling 375
subcomponents 469, 470
subtemplates 378
subtypes 624
superuser

accessing 67, 68
recordsets, accessing as 281, 282

Sync collector 585

T
tablet mode 211
tagged Python test cases

running 483-485
tags 219
templates

creating 374
modifying 374

text file editor
references 297

text translation
with web client user interface 291-293

time conditions
automated actions, using 325-328

tours
running, from UI 496, 497
used, for improving onboarding 440-443

tour test cases
adding 491-494

translation files
importing 299-301

translations
managing, with gettext tools 297-299

translation strings
exporting, to file 293-297

two-factor authentication (2FA) 561

U
unaccent

reference link 233
Urchin Tracking Modules (UTMs) 364
URLs

redirecting 406, 407
user

redirecting 192, 193
user actions

changing 178-183
managing, in OWL component 450, 451

user changes
logging, in chatter 627, 628

user errors
reporting 115, 116

user input
collecting, from website 390-395

user preference settings
setting up 286-289

V
variable setting 378
videos/screenshots

generating, for failed test cases 500, 501

Index 733

view elements
hiding, based on security groups 283, 284

view inheritance 235-237
order of evaluation 239

views 212
adding 64-69
creating 426-437

views, Odoo Web Studio
activity view 681
calendar view 676, 677
form view 669-671
gantt view 680
graph view 679
kanban view 674
list view 672-674
map view 681
pivot view 679
resource view 681
search view 680

virtual environments (venvs) 10
virtual machine (VM) 6
visitor’s country information

collecting 399-401
Voice over Internet Protocol (VoIP) 2
Vue 447

W
web-accessible paths

access, restricting 351-354
web assets 58
web.assets_frontend template 366
web client 422
web client user interface

used, for text translation 291-293
web code editor 509

backup and recovery 510
build share 510

community modules 510
external dependencies 509
faster deployment 510
mail catcher 510
mail server 510
server logs 509
SSH access 509
staging and development branches 510

web interface 343
used, for installing command line 41
used, for installing local add-on

modules 38-40
web modules 343
Web Server Gateway Interface (WSGI) 343
website-related records

publish management 408-410
website’s custom language URL code

altering 301, 302
website template

creating 374, 375
WebSockets 487
Werkzeug 343

error handling 345
middleware 344
reference link 344
request handling 344
response generation 344
routing 344
session management 344
tasks utilities 344
URL building 344

wget tool 8
widgets

adding, to form view 215, 216
window actions

adding 208-211
specific view, opening 212-214

with_prefetch() method 567, 568

Index734

wizard 110
code reuse 192
writing, for user guidance 188-191

write() method
extending 134-137

X
XML files

functions, invoking from 156, 157
records, deleting from 155, 156
used, for loading data 146-149

XML ID 144
XML-RPC

used, for calling methods 545, 546
used, for connecting Odoo 536-538
used, for creating records 542-545
used, for deleting records 542-545
used, for logging in Odoo 536-538
used, for reading records 538-542
used, for searching records 538-542
used, for updating records 542-545

www.packtpub.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as
industry leading tools to help you plan your personal development and advance your career. For more
information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and Videos from over

4,000 industry professionals

• Improve your learning with Skill Plans built especially for you

• Get a free eBook or video every month

• Fully searchable for easy access to vital information

• Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at packtpub.com and as a print book customer, you
are entitled to a discount on the eBook copy. Get in touch with us at customercare@packtpub.
com for more details.

At www.packtpub.com, you can also read a collection of free technical articles, sign up for a range
of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Odoo 15 Development Essentials

Daniel Reis

ISBN: 978-1-80020-006-7

• Install Odoo from source and organize the development environment

• Create your first Odoo app from scratch

• Understand the application components available in Odoo

• Structure the application’s data model using ORM features

• Use the ORM API to implement the business logic layer

• Design a graphical user interface (GUI) for the web client and website

• Use the Odoo External API to interface with external systems

• Deploy and maintain your application in production environments

737Other Books You May Enjoy

Democratizing RPA with Power Automate Desktop

Peter Krause

ISBN: 978-1-80324-594-2

• Master RPA with Power Automate Desktop to commence your debut flow

• Grasp all essential product concepts such as UI flow creation and modification, debugging,
and error handling

• Use PAD to automate tasks in conjunction with the frequently used systems on your desktop

• Attain proficiency in configuring flows that run unattended to achieve seamless automation

• Discover how to use AI to enrich your flows with insights from different AI models

• Explore how to integrate a flow in a broader cloud context

738

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.packtpub.com and
apply today. We have worked with thousands of developers and tech professionals, just like you, to
help them share their insight with the global tech community. You can make a general application,
apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share your thoughts
Now you’ve finished Odoo Development Cookbook, we’d love to hear your thoughts! If you purchased
the book from Amazon, please click here to go straight to the Amazon review page for this book and
share your feedback or leave a review on the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

739

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content
in your inbox daily

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

https://packt.link/free-ebook/9781805124276

2. Submit your proof of purchase

3. That’s it! We’ll send your free PDF and other benefits to your email directly

